185
Views
29
CrossRef citations to date
0
Altmetric
Original Article

Involvement of Angiotensin II-Dependent Vascular Endothelial Growth Factor Gene Expression via NADPH Oxidase in the Retina in a Type 2 Diabetic Rat Model

, , , , , , , , & show all
Pages 885-891 | Received 27 Mar 2008, Accepted 03 Aug 2008, Published online: 02 Jul 2009

REFERENCES

  • Klein R, Klein B E, Moss S E. Epidemiology of proliferative diabetic retinopathy. Diab Care 1992; 15: 1875–1891
  • VanNewkirk M R, Weih L, McCarty C A, Taylor H R. Cause-specific prevalence of bilateral visual impairment in Victoria, Australia: The Visual Impairment Project. Ophthalmology 2001; 108: 960–967
  • Kempen J H, O'Colmain B J, Leske M C, Haffner S M, Klein R, Moss S E, Taylor H R, Hamman R F. Eye Diseases Prevalence Research Group. The prevalence of diabetic retinopathy among adults in the United States. Arch Ophthalmol 2004; 122: 552–563
  • Frank R N. Diabetic retinopathy. N Engl J Med 2004; 350: 48–58
  • UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes. BMJ 1998; 317: 703–713
  • Wan Nazaimoon W, Letchuman R, Noraini N, Ropilah A, Zainal M, Ismail I, Wan Mohamad W, Faridah I, Singaraveloo M, Sheriff I, Khalid B. Systolic hypertension and duration of diabetes mellitus are important determinants of retinopathy and microalbuminuria in young diabetics. Diabetes Res Clin Pract 1999; 46: 213–221
  • Kohler K, Wheeler-Schilling T, Jurklies B, Guenther E, Zrenner E. Angiotensin II in the rabbit retina. Vis Neurosci 1997; 14: 63–71
  • Danser A H, Derkx F H, Admiraal P J, Deinum J, de Jong P T, Schalekamp M A. Angiotensin levels in the eye. Invest Ophthalmol Vis Sci 1994; 35: 1008–1018
  • Moravski C J, Kelly D J, Cooper M E, Gilbert R E, Bertram J F, Shahinfar S, Skinner S L, Wilkinson-Berka J L. Retinal neovascularization is prevented by blockade of the renin-angiotensin system. Hypertension 2000; 36: 1099–1104
  • Moravski C J, Skinner S L, Stubbs A J, Sarlos S, Kelly D J, Cooper M E, Gilbert R E, Wilkinson-Berka J L. The renin-angiotensin system influences ocular endothelial cell proliferation in diabetes: Transgenic and interventional studies. Am J Pathol 2003; 162: 151–160
  • Chaturvedi N, Sjolie A K, Stephenson J M, Abrahamian H, Keipes M, Castellarin A, Rogulja-Pepeonik Z, Fuller J H. Effect of lisinopril on progression of retinopathy in normotensive people with type 1 diabetes. Lancet 1998; 351: 28–31
  • Caldwell R B, Bartoli M, Behzadian M A, El-Remessy A E, Al-Shabrawey M, Platt D H, Liou G I, Caldwell R W. Vascular endothelial growth factor and diabetic retinopathy: Role of oxidative stress. Curr Drug Targets 2005; 6: 511–524
  • Inoguchi T, Nawata H. NAD(P)H oxidase activation: A potential target mechanism for diabetic vascular complications, progressive β -cell dysfunction, and metabolic syndrome. Curr Drug Targets 2005; 6: 495–501
  • Zhang L, Zalewski A, Liu Y, Mazurek T, Cowan S, Martin J L, Hofmann S M, Vlassara H, Shi Y. Diabetes-induced oxidative stress and low-grade inflammation in porcine coronary arteries. Circulation 2003; 108: 472–478
  • Al-Shabrawey M, Bartoli M, El-Remessy A B, Platt D H, Matragoon S, Behzadian M A, Caldwell R W, Caldwell R B. Inhibition of NAD(P)H oxidase activity blocks vascular endothelial growth factor overexpression and neovascularization during ischemic retinopathy. Am J Pathol 2005; 167: 599–607
  • Shinohara M, Masuyama T, Shoda T, Takahashi T, Katsuda Y, Komeda K, Kuroki M, Kakehashi A, Kanazawa Y. A new spontaneously diabetic non-obese Torii rat strain with severe ocular complications. Int J Exp Diabetes Res 2000; 1: 89–100
  • Yamada H, Yamada E, Higuchi A, Matsumura M. Retinal neovascularization without ischemia in the spontaneously diabetic Torii rat. Diabetologia 2005; 48: 1663–1668
  • Tanaka H, Takai S, Jin D, Furubayashi K, Inoue N, Kajimoto Y, Miyatake S, Kuroiwa T, Miyazaki M. Inhibition of matrix metalloproteinase-9 activity by trandolapril after middle cerebral artery occlusion in rats. Hypertens Res 2007; 30: 469–475
  • Takai S, Kirimura K, Jin D, Muramatsu M, Yoshikawa K, Mino Y, Miyazaki M. Significance of angiotensin II receptor blocker lipophilicities and their protective effect against vascular remodeling. Hypertens Res 2005; 28: 593–600
  • Takai S, Kim S, Sakonjo H, Miyazaki M. Mechanisms of angiotensin II type 1 receptor blocker for anti-atherosclerotic effect in monkeys fed a high-cholesterol diet. J Hypertens 2003; 21: 361–369
  • Ishizaki E, Takai S, Ueki M, Maeno T, Maruichi M, Sugiyama T, Oku H, Ikeda T, Miyazaki M. Correlation between angiotensin-converting enzyme, vascular endothelial growth factor, and matrix metalloproteinase-9 in the vitreous of eyes with diabetic retinopathy. Am J Ophthalmol 2006; 141: 129–134
  • Aiello L P, Avery R L, Arrigg P G, Keyt B A, Jampel H D, Shah S T, Pasquale L R, Thieme H, Iwamoto M A, Park J E, Nguyen H V, Aiello L M, Ferrara N, King G L. Vascular endothelial growth factor in ocular fluid of 445 patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994; 331: 1480–1487
  • Amin R H, Frank R N, Kennedy A, Eliott D, Puklin J E, Abrams G W. Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 1997; 38: 36–47
  • Adamis A P, Miller J W, Bernal M T, D'Amico D J, Folkman J, Yeo T K, Yeo K T. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol 1994; 118: 445–450
  • Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int 1999; 56: 794–814
  • Ferrara N. Molecular and biological properties of vascular endothelial growth factor. J Mol Med 1999; 77: 527–543
  • Otani A, Takagi H, Oh H, Suzuma K, Matsumura M, Ikeda E, Honda Y. Angiotensin II-stimulated vascular endothelial growth factor expression in bovine retinal pericytes. Invest Ophthalmol Vis Sci 2000; 41: 1192–1199
  • Ushio-Fukai M, Alexander R W. Reactive oxygen species as mediators of angiogenesis signaling: Role of NAD(P)H oxidase. Mol Cell Biochem 2004; 264: 85–97
  • Imanishi T, Hano T, Nishio I. Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress. J Hypertens 2005; 23: 97–104
  • Ellis E A, Grant M B, Murray F T, Wachowski M B, Guberski D L, Kubilis P S, Lutty G A. Increased NADH oxidase activity in the retina of the BBZ/Wor diabetic rat. Free Rad Biol Med 1998; 24: 111–120
  • Grassi G. Diabetic retinopathy. Minerva Med 2003; 94: 419–435
  • Schalkwijk C G, Ligtvoet N, Twaalfhoven H, Jager A, Blaauwgeers H G, Schlingemann R O, Tarnow L, Parving H H, Stehouwer C D, van Hinsbergh V W. Amadori albumin in type 1 diabetic patients: Correlation with markers of endothelial function, association with diabetic nephropathy, and localization in retinal capillaries. Diabetes 1999; 48: 2446–2453
  • Stitt A W, Li Y M, Gardiner T A, Bucala R, Archer D B, Vlassara H. Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. Am J Pathol 1997; 150: 523–531
  • Yamagishi S, Nakamura K, Matsui T, Inagaki Y, Takenaka K, Jinnouchi Y, Yoshida Y, Matsuura T, Narama I, Motomiya Y, Takeuchi M, Inoue H, Yoshimura A, Bucala R, Imaizumi T. Pigment epithelium-derived factor inhibits advanced glycation end product-induced retinal vascular hyperpermeability by blocking reactive oxygen species-mediated vascular endothelial growth factor expression. J Biol Chem 2006; 281: 20213–20220
  • Okamoto T, Yamagishi S, Inagaki Y, Amano S, Koga K, Abe R, Takeuchi M, Ohno S, Yoshimura A, Makita Z. Angiogenesis induced by advanced glycation end products and its prevention by cerivastatin. FASEB J 2002; 16: 1928–1930
  • Li L, Renier G. Activation of nicotinamide adenine dinucleotide phosphate (reduced form) oxidase by advanced glycation end products links oxidative stress to altered retinal vascular endothelial growth factor expression. Metabolism 2006; 55: 1516–1523
  • Mamputu J C, Renier G. Advanced glycation end products increase, through a protein kinase C-dependent pathway, vascular endothelial growth factor expression in retinal endothelial cells. Inhibitory effect of gliclazide. J Diabetes Compl 2002; 16: 284–293
  • Sugiyama T, Okuno T, Fukuhara M, Oku H, Ikeda T, Obayashi H, Ohta M, Fukui M, Hasegawa G, Nakamura N. Angiotensin II receptor blocker inhibits abnormal accumulation of advanced glycation end products and retinal damage in a rat model of type 2 diabetes. Exp Eye Res 2007; 85: 406–412
  • Polonsky K S, Sturis J, Bell G I. Non-insulin-dependent diabetes mellitus A genetically programmed failure of the β cell to compensate for insulin resistance. N Engl J Med 1996; 334: 777–783
  • Sjølie A K, Porta M, Parving H H, Bilous R, Klein R. The DIRECT Programme Study Group. The DIabetic REtinopathy Candesartan Trials (DIRECT) Programme: Baseline characteristics. J Renin Angiotensin Aldosterone Syst 2005; 6: 25–32

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.