242
Views
42
CrossRef citations to date
0
Altmetric
Research Article

Molecular Expression and Functional Evidence of a Drug Efflux Pump (BCRP) in Human Corneal Epithelial Cells

, , , , &
Pages 1-9 | Received 29 Sep 2008, Accepted 31 Oct 2008, Published online: 02 Jul 2009

REFERENCES

  • Ito K, Oleschuk C J, Westlake C, Vasa M Z, Deeley R G, Cole S P. Mutation of Trp1254 in the multispecific organic anion transporter, multidrug resistance protein 2 (MRP2) (ABCC2), alters substrate specificity and results in loss of methotrexate transport activity. J Biol Chem 2001; 41: 38108–38114
  • Dey S, Patel J, Anand B S, Jain-Vakkalagadda B, Kaliki P, Pal D, Ganapathy V, Mitra A K. Molecular evidence and functional expression of P-glycoprotein (MDR1) in human and rabbit cornea and corneal epithelial cell lines. Invest Ophthalmol Vis Sci 2003; 44: 2909–2918
  • Karla P K, Pal D, Mitra A K. Molecular evidence and functional expression of multidrug resistance associated protein (MRP) in rabbit corneal epithelial cells. Exp Eye Res 2007; 84: 53–60
  • Karla P K, Pal D, Quinn T, Mitra A K. Molecular evidence and functional expression of a novel drug efflux pump (ABCC2) in human corneal epithelium and rabbit cornea and its role in ocular drug efflux. Int J Pharm 2007; 336: 12–21
  • Karla P K, Pal D, Mitra A K. Molecular evidence and functional expression of multi-drug resistance associated protein (MRP) in human corneal epithelium, rabbit cornea, and evaluation of its role using a specific inhibitor. 2006, (AAPS abstract)
  • Naruhashi K, Tamai I, Inoue N, Muraoka H, Sai Y, Suzuki N, Tsuji A. Involvement of multidrug resistance-associated protein 2 in intestinal secretion of grepafloxacin in rats. Antimicrob Agents Chemother 2002; 46: 344–349
  • Seral C, Carryn S, Tulkens P M, Van Bambeke F. Influence of P-glycoprotein and MRP efflux pump inhibitors on the intracellular activity of azithromycin and ciprofloxacin in macrophages infected by Listeria monocytogenes or Staphylococcus aureus. J Antimicrob Chemother 2003; 51: 1167–1173
  • Michot J M, Van Bambeke F, Mingeot-Leclercq M P, Tulkens P M. Active efflux of ciprofloxacin from J774 macrophages through an MRP-like transporter. Antimicrob Agents Chemother 2004; 48: 2673–2682
  • Chen Z S, Guo Y, Belinsky M G, Kotova E, Kruh G D. Transport of bile acids, sulfated steroids, estradiol 17-beta-D-glucuronide, and leukotriene C4 by human multidrug resistance protein 8 (ABCC11). Mol Pharmacol 2005; 67: 545–557
  • Chu X Y, Huskey S E, Braun M P, Sarkadi B, Evans D C, Evers R. Transport of ethinylestradiol glucuronide and ethinylestradiol sulfate by the multidrug resistance proteins MRP1, MRP2, and MRP3. J Pharmacol Exp Ther 2004; 309: 156–164
  • Zelcer N, Reid G, Wielinga P, Kuil A, van der Heijden I, Schuetz J D, Borst P. Steroid and bile acid conjugates are substrates of human multidrug-resistance protein (MRP) 4 (ATP-binding cassette C4). Biochem J 2003; 371: 361–367
  • Bredel M, Bredel C, Sikic B I. Genomics-based hypothesis generation: A novel approach to unraveling drug resistance in brain tumors. Lancet Oncol 2004; 5: 89–100
  • Sawicka M, Kalinowska M, Skierski J, Lewandowski W. A review of selected anti-tumor therapeutic agents and reasons for multidrug resistance occurance. J Pharm Pharmacol 2004; 56: 1067–1081
  • Doyle L A, Yang W, Abruzzo L V, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 1998; 95: 15665–15670
  • Miyake K, Mickley L, Litman T, et al. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: Demonstration of homology to ABC transport genes. Cancer Res 1999; 59: 8–13
  • Allikmets R, Schriml L M, Hutchinson A, Romano-Spica V, Dean M. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res 1998; 58: 5337–5339
  • Mao Q, Unadkat J D. Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J 2005; 7: E118–133
  • Klucken J, Buchler C, Orso E. ABCG1 (ABC8), the human homolog of the Drosophila white gene, is a regulator of macrophage cholesterol and phospholipid transport. Proc Natl Acad Sci USA 2000; 97: 817–822
  • Graf G A, Yu L, Li W P, et al. ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J Biol Chem 2003; 278: 48275–48282
  • Xu J, Liu Y, Yang Y, Bates S, Zhang J T. Characterization of oligomeric human half ABC transporter ABCG2/BCRP/ MXR/ABCP in plasma membranes. J Biol Chem 2004; 279: 19781–19789
  • Suzuki M, Suzuki H, Sugimoto Y, Sugiyama Y. ABCG2 transports sulfated conjugates of steroids and xenobiotics. J Biol Chem 2003; 278: 22644–22649
  • Imai Y, Asada S, Tsukahara S, Ishikawa E, Tsuruo T, Sugimoto Y. Breast cancer resistance protein exports sulfated estrogens but not free estrogens. Mol Pharmacol 2003; 64: 610–618
  • Chen Z S, Robey R W, Belinsky M G, et al. Transport of methotrexate, methotrexate polyglutamates, and 17β -estradiol 17-(β -D-glucuronide) by ABCG2: Effects of acquired mutations at R482 on methotrexate transport. Cancer Res 2003; 63: 4048–4054
  • Umemoto T, Yamato M, Nishida K, Kohno C, Yang J, Tano Y, Okano T. Rat limbal epithelial side population cells exhibit a distinct expression of stem cell markers that are lacking in side population cells from the central cornea. FEBS Lett 2005; 579: 6569–6574
  • Arne H, Hana T, Lotta S, Hannu U. Evaluation of adverse ocular effects of 5–fluorouracil by using human corneal epithelial cell cultures. J of Tox 2002; 21: 283–292
  • Araki-Sasaki K, Ohashi Y, Sasabe T, Hayashi K, Watanabe H, Tano Y, Handa H. An SV40-immortalized human corneal epithelial cell line and its characterization. Invest Ophthalmol Vis Sci 1995; 36: 614–621
  • Breedveld P, Pluim D, Cipriani G, Dahlhaus F, van Eijndhoven M A, de Wolf C J, Kuil A, Beijnen J H, Scheffer G L, Jansen G, Borst P, Schellens J H. The effect of low pH on breast cancer resistance protein (ABCG2)-mediated transport of methotrexate, 7-hydroxymethotrexate, methotrexate diglutamate, folic acid, mitoxantrone, topotecan, and resveratrol in in vitro drug transport models. Mol Pharmacol 2007; 71: 240–249
  • Sikri V, Pal D, Jain R, Kalyani D, Mitra A K. Cotransport of macrolide and fluoroquinolones, a beneficial interaction reversing P-glycoprotein efflux. Am J Ther 2004; 11: 433–442
  • Schuetz J D, Connelly M C, Sun D, Paibir S G, Flynn P M, Srinivas R V, Kumar A, Fridland A. MRP4: A previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat Med 1999; 5: 1048–1051
  • Dallas S, Zhu X, Baruchel S, Schlichter L, Bendayan R. Functional expression of the multidrug resistance protein 1 in microglia. J Pharmacol Exp Ther 2003; 307: 282–290
  • Sugawara M, Nakanishi T, Fei Y J, Huang W, Ganapathy M E, Leibach F H, Ganapathy V. Cloning of an amino acid transporter with functional characteristics and tissue expression pattern identical to that of system A. J Biol Chem 2000; 275: 16473–16477
  • Kupferman A, Leibowitz H M. Topically applied steroids in corneal disease. IV. The role of drug concentration in stromal absorption of prednisolone acetate. Arch Ophthalmol 1974; 91: 377–380
  • Leibowitz H M, Kupferman A. Anti-inflammatory effectiveness in the cornea of topically administered prednisolone. Invest Ophthalmol 1974; 13: 757–763
  • Huang H S, Schoenwald R D, Lach J L. Corneal penetration behavior of beta-blocking agents III: In vitro/in vivo correlations. J Pharm Sci 1983; 72: 1279–1281
  • Schoenwald R D, Huang H S. Corneal penetration behavior of beta-blocking agents I: Physiochemical factors. J Pharm Sci 1983; 72: 1266–1272
  • Barza M, Kane A, Baum J. Pharmacokinetics of intravitreal carbenicillin, cefazolin, and gentamicin in rhesus monkeys. Invest Ophthalmol Vis Sci 1983; 24: 1602–1606
  • Mayhew J W, Fiore C, Murray T, Barza M. An internally standardized assay for amphotericin B in tissues and plasma. J Chromatogr 1983; 274: 271–279
  • Baum J, Barza M. Topical vs. subconjunctival treatment of bacterial corneal ulcers. Ophthalmology 1983; 90: 162–168
  • Agata M, Tanaka M, Nakajima A, Fujii A, Kuboyama N, Tamura T, Araie M. Ocular penetration of topical diclofenac sodium, a non-steroidal anti-inflammatory drug, in rabbit eye. Nippon Ganka Gakkai Zasshi 1984; 88: 991–996
  • Dey S, Gunda S, Mitra A K. Pharmacokinetics of erythromycin in rabbit corneas after single-dose infusion: Role of P-glycoprotein as a barrier to in vivo ocular drug absorption. J Pharmacol Exp Ther 2004; 311: 246–255
  • Karla P K, Quinn T L, Betty H L, Thomas P, Pal D, Mitra A K. Pharmacokinetic evaluation of a nucleotide efflux transporter on cornea. 2008, AAPS abstract
  • Karla P K, Quinn T L, Samanta S K, Mitra A K. A specific inhibitor can overcome nucleotide efflux transporter on human and rabbit corneal epithelial cells and significantly increase anterior segment drug delivery. 2007, AAPS abstract
  • Acheampong A A, Small D, Baumgarten V, Welty D, Tang-Liu D. Formulation effects on ocular absorption of brimonidine in rabbit eyes. J Ocul Pharmacol Ther 2002; 18: 325–337
  • Becker U, Ehrhardt C, Daum N, Baldes C, Schaefer U F, Ruprecht K W, Kim K J, Lehr C M. Expression of ABC-transporters in human corneal tissue and the transformed cell line, HCE-T. J Ocul Pharmacol Ther 2007; 23: 172–181
  • Zhang T, Xiang C D, Gale D, Carreiro S, Wu E Y, Zhang E Y. Drug transporter and cytochrome P450 mRNA expression in human ocular barriers: Implications for ocular drug disposition. Drug Metab Dispos 2008; 36: 1300–1307
  • Perez-Plasencia C, Duenas-Gonzalez A. Can the state of cancer chemotherapy resistance be reverted by epigenetic therapy?. Mol Cancer 2006; 5: 27
  • Gottesman M M, Fojo T, Bates S E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat Rev Cancer 2002; 2: 48–58
  • Lee B D, French K J, Zhuang Y, Smith C D. Development of a syngeneic in vivo tumor model and its use in evaluating a novel P-glycoprotein modulator, PGP-4008. Oncol Res 2003; 14: 49–60
  • Fry D W, White J C, Goldman I D. Effects of 2,4-dinitrophenol and other metabolic inhibitors on the bidirectional carrier fluxes, net transport, and intracellular binding of methotrexate in Ehrlich ascites tumor cells. Cancer Res 1980; 40(10)3669–3673

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.