123
Views
6
CrossRef citations to date
0
Altmetric
Cornea & Ocular Surface

Fractal Features and Surface Micromorphology of Unworn Surfaces of Rigid Gas Permeable Contact Lenses

ORCID Icon, , , &
Pages 1118-1123 | Received 23 Jun 2016, Accepted 05 Feb 2017, Published online: 26 Apr 2017

References

  • Efron N. Contact Lens Practice. 2nd ed. China: Butterworth Heinemann Elsevier; 2010.
  • Ţălu SD. Ophtalmologie – Cours. Cluj-Napoca, Romania: Medical publishing house “Iuliu Haţieganu”; 2005.
  • Ţălu Ş, Ţălu M, Giovanzana S, Shah R. A brief history of contact lenses. HVM Bioflux 2011;3(1):33–37.
  • Douthwaite WA. Contact Lens Optics and Lens Design. 3rd ed. Bradford, UK: Butterworth Heinemann Elsevier; 2006.
  • Bettuelli M, Trabattoni S, Fagnola M, Tavazzi S, Introzzi L, Farris S. Surface properties and wear performances of siloxane-hydrogel contact lenses. J Biomed Mater Res B Appl Biomater 2013;101(8):1585–1593. DOI:10.1002/jbm.b.32901.
  • Kojić D, Bojović B, Stamenković D, Jagodić N, Koruga Ð. Contact lenses characterization by AFM MFM, and OMF. In: Ghista, DN (Ed). Biomedical Science, Engineering and Technology. Croatia: InTech; 2012.
  • Ţălu Ş. Characterization of surface roughness of unworn hydrogel contact lenses at a nanometric scale using methods of modern metrology. Polym Eng Sci 2013;53(10):2141–2150. DOI: 10.1002/pen.23481.
  • Maldonado-Codina C, Efron N. Impact of manufacturing technology and material composition on the surface characteristics of hydrogel contact lenses. Clin Exp Optom 2005;88:396–404.
  • Ţălu Ş, Ţălu M. Surface roughness of contact lenses investigated with atomic force microscopy. SBMM. 2012;7:107–110.
  • Turhan SA, Toker E. Optical coherence tomography to evaluate the interaction of different edge designs of four different silicone hydrogel lenses with the ocular surface. Clin Ophthalmol 2015;9:935–942. DOI: 10.2147/OPTH.S83798.
  • Filipecki J, Sitarz M, Kocela A, Kotynia K, Jelen P, Filipecka K. et al. Studying functional properties of hydrogel and silicone-hydrogel contact lenses with PALS, MIR and Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 2014;131:686–690. DOI: 10.1016/j.saa.2014.04.144.
  • González-Méijome JM. Objective analysis of properties and material degradation in contact lens polymers using different techniques. Ph.D. Thesis, University of Minho, Portugal; 2007.
  • Kim SH, Marmo C, Somorjai GA. Friction studies of hydrogel contact lenses using AFM: non-crosslinked polymers of low friction at the surface. Biomaterials 2001;22:3285–3294.
  • Qu W, Busscher HJ, Hooymans JM, van der Mei HC. Surface thermodynamics and adhesion forces governing bacterial transmission in contact lens related microbial keratitis. J Colloid Interface Sci 2011;358(2):430–436.
  • Silva D, Fernandes AC, Nunes TG, Colaço R, Serro AP. The effect of albumin and cholesterol on the biotribological behavior of hydrogels for contact lenses. Acta Biomater 2015;26:184–194. DOI: 10.1016/j.actbio.2015.08.011.
  • Pult H, Tosatti SG, Spencer ND, Asfour JM, Ebenhoch M, Murphy PJ. Spontaneous blinking from a tribological viewpoint. Ocul Surf 2015;13(3):236–249. DOI: 10.1016/j.jtos.2014.12.004.
  • Jaishankar D, Buhrman JS, Valyi-Nagy T, Gemeinhart RA, Shukla D. Extended release of an anti-heparan sulfate peptide from a contact lens suppresses corneal herpes simplex virus-1 infection. Invest Ophthalmol Vis Sci 2016;57(1):169–180. DOI: 10.1167/iovs.15-18365.
  • Mak WC, Cheung KY, Orban J, Lee CJ, Turner AP, Griffith M. Surface-engineered contact lens as an advanced theranostic platform for modulation and detection of viral infection. ACS Appl Mater Interfaces 2015;7(45):25487–25494. DOI: 10.1021/acsami.5b08644.
  • Cheng W, Yang C, Ding X, Engler AC, Hedrick JL, Yang YY. Broad-spectrum antimicrobial/antifouling soft material coatings using poly(ethylenimine) as a tailorable scaffold. Biomacromolecules 2015;16(7):1967–1977. DOI: 10.1021/acs.biomac.5b00359.
  • García-Fernández MJ, Tabary N, Martel B, Cazaux F, Oliva A, Taboada P. et al. Poly-(cyclo)dextrins as ethoxzolamide carriers in ophthalmic solutions and in contact lenses. Carbohydr Polym 2013;98(2):1343–1352. DOI: 10.1016/j.carbpol.2013.08.003.
  • Rohit A, Willcox M, Stapleton F. Tear lipid layer and contact lens comfort: a review. Eye Contact Lens 2013;39(3):247–253. DOI: 10.1097/ICL.0b013e31828af164.
  • Ţălu Ş. Mathematical methods used in monofractal and multifractal analysis for the processing of biological and medical data and images. Anim Biol Anim Husb 2012;4(1):1–4.
  • Ţălu Ş. Texture analysis methods for the characterisation of biological and medical images. Extreme Life Biospeology Astrobiol 2012;4(1):8–12.
  • Ţălu Ş, Stach S. Multifractal characterization of unworn hydrogel contact lens surfaces. Polym Eng Sci 2014;54:1066–1080. DOI: 10.1002/pen.23650.
  • Premium GP Materials. [cited 2016 Jul 23]. Available from: http://www.lagadocorp.co/products/premium-gp-materials
  • GP Lens Materials. [cited 2017 Jan 23]. Available from: http://www.bausch.com/ecp/our-products/contact-lenses/gp-lens-materials
  • Contamac’s Gas Permeable ( GP) materials. [cited 2017 Jan 23]. Available from: http://www.contamac.com/Products/Gas-Permeable/
  • Phillips AJ, Lynne S. (eds.). Contact lenses. 4th ed., Oxford, UK: Butterworth-Heinemann Medical; 1997.
  • Kulesza S, Bramowicz M. A comparative study of correlation methods for determination of fractal parameters in surface characterization. Appl Surf Sci 2014;293:196–201.
  • Bramowicz M, Kulesza S, Lipiński T, Szabracki P, Piątkowski P. Fractal analysis of AFM data characterizing strongly isotropic and anisotropic surface topography, Solid State Phenom 2013; 203–204:86–89. DOI: 10.4028/www.scientific.net/SSP.203-204.86.
  • Ţălu Ş, Bramowicz M, Kulesza S, Shafiekhani A, Ghaderi A, Mashayekhi F. et al. Microstructure and tribological properties of FeNPs@a-C:H films by micromorphology analysis and fractal geometry. Ind Eng Chem Res 2015;54(33):8212–8218. DOI: 10.1021/acs.iecr.5b02449.
  • Ţălu Ş, Bramowicz M, Kulesza S, Solaymani S, Shafikhani A, Ghaderi A. et al. Gold nanoparticles embedded in carbon film: micromorphology analysis. J Ind Eng Chem 2016;35:158–166. DOI: 10.1016/j.jiec.2015.12.029.
  • Ţălu Ş, Solaymani S, Bramowicz M, Naseri N, Kulesza S, Ghaderi A. Surface micromorphology and fractal geometry of Co/CP/X (X = Cu, Ti, SM and Ni) nanoflake electrocatalysts. RSC Advances 2016;6:27228–27234. DOI: 10.1039/C6RA01791F.
  • Ţălu Ş, Bramowicz M, Kulesza S, Solaymani S, Ghaderi A, Dejam Laya et al. Microstructure and micromorphology of ZnO thin films: case study on Al doping and annealing effects. Superlattice Microst 2016;93:109–121. DOI: 10.1016/j.spmi.2016.03.003.
  • Vranceanu DM, Cotrut CM, Bramowicz M, Titorencu I, Kulesza S, Kiss A. et al. Osseointegration of sputtered SiC-added hydroxyapatite for orthopaedic applications. Ceram Int 2016;42(8):10085–10093.
  • Bramowicz M, Kulesza S, Czaja P, Maziarz W. Application of the autocorrelation function and fractal geometry methods for analysis of MFM images. Arch Metall Mater 2014;59:451–457.
  • Czaja P, Maziarz W, Przewoźnik J, Żywczak A, Ozga P, Bramowicz M. et al. Surface topography, microstructure and magnetic domains in Al for Sn substituted metamagnetic Ni–Mn–Sn Heusler alloy ribbons. Intermetallics 2014;55:1–8.
  • Dong WP, Sullivan PJ, Stout KJ. Comprehensive study of parameters for characterizing 3-dimensional surface topography. 4. Parameters for characterizing spatial and hybrid properties. Wear 1994;178:45–60.
  • Sayles RS, Thomas TR. Spatial representation of surface roughness by means of structure function - Practical alternative to correlation. Wear 1977;42:263–276.
  • Thomas A, Thomas TR. Digital analysis of very small scale surface roughness. J Wave Mater Interact 1988;3:341–350.
  • Ţălu Ş. Micro and Nanoscale Characterization of Three Dimensional Surfaces. BASICS and Applications. Cluj-Napoca, Romania: Napoca Star Publishing; 2015.
  • Borri C, Paggi M. Topological characterization of antireflective and hydrophobic rough surfaces: are random process theory and fractal modeling applicable? J Phys D Appl Phys 2015;48: 045301. DOI: 10.1088/0022-3727/48/4/045301.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.