756
Views
42
CrossRef citations to date
0
Altmetric
Articles

Comprehensive Modeling of Corneal Alkali Injury in the Rat Eye

, , , , , & show all
Pages 1348-1357 | Received 24 Dec 2016, Accepted 28 Mar 2017, Published online: 21 Jun 2017

References

  • Fish R, Davidson RS. Management of ocular thermal and chemical injuries, including amniotic membrane therapy. Curr Opin Ophthalmol 2010;21(4):317–321.
  • Tuft SJ, Shortt AJ. Surgical rehabilitation following severe ocular burns. Eye (Lond) 2009;23(10):1966–1971.
  • Peate WF. Work-related eye injuries and illnesses. Am Fam Physician 2007 Apr 1;75(7):1017–1022.
  • Eslani M, Baradaran-Rafii A, Movahedan A, Djalilian AR. The ocular surface chemical burns. J Ophthalmol 2014;2014:196827.
  • Spector J, Fernandez WG. Chemical, thermal, and biological ocular exposures. Emerg Med Clin North Am 2008 Feb;26(1):125–36, vii.
  • Sharma N, Singh D, Sobti A, Agarwal P, Velpandian T, Titiyal JS, et al. Course and outcome of accidental sodium hydroxide ocular injury. Am J Ophthalmol 2012 Oct;154(4):740–749.e2.
  • Wagoner MD. Chemical injuries of the eye: current concepts in pathophysiology and therapy. Surv Ophthalmol 1997 Jan–Feb;41(4):275–313.
  • Miri A, Al-Deiri B, Dua HS. Long-term outcomes of autolimbal and allolimbal transplants. Ophthalmology 2010 Jun;117(6):1207–1213.
  • Oh JY, Choi H, Lee RH, Roddy GW, Ylostalo JH, Wawrousek E, et al. Identification of the HSPB4/TLR2/NF-kappaB axis in macrophage as a therapeutic target for sterile inflammation of the cornea. EMBO Mol Med 2012 May;4(5):435–448.
  • Zieske JD. Extracellular matrix and wound healing. Curr Opin Ophthalmol 2001 Aug;12(4):237–241.
  • Qazi Y, Wong G, Monson B, Stringham J, Ambati BK. Corneal transparency: genesis, maintenance and dysfunction. Brain Res Bull 2010 Feb 15; 81 (2–3): 198–210.
  • Kilic Muftuoglu I, Aydin Akova Y, Cetinkaya A. Clinical spectrum and treatment approaches in corneal burns. Turk J Ophthalmol 2015 Oct;45(5):182–187.
  • Gupta N, Kalaivani M, Tandon R. Comparison of prognostic value of roper hall and dua classification systems in acute ocular burns. Br J Ophthalmol 2011 Feb;95(2):194–198.
  • Borregaard N, Cowland JB. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 1997 May 15;89(10):3503–3521.
  • Fine A, Goldstein RH. The effect of transforming growth factor-beta on cell proliferation and collagen formation by lung fibroblasts. J Biol Chem 1987 Mar 15;262(8):3897–3902.
  • Pfister RR, Haddox JL, Yuille-Barr D. The combined effect of citrate/ascorbate treatment in alkali-injured rabbit eyes. Cornea 1991 Mar;10(2):100–104.
  • Saika S, Uenoyama K, Hiroi K, Tanioka H, Takase K, Hikita M. Ascorbic acid phosphate ester and wound healing in rabbit corneal alkali burns: epithelial basement membrane and stroma. Graefes Arch Clin Exp Ophthalmol 1993 Apr;231(4):221–227.
  • Pfister RR, Haddox JL, Snyder TL. Topical citrate inhibits the adherence of neutrophils to postcapillary venules. Cornea 1990 Jul;9(3):238–245.
  • Haddox JL, Pfister RR, Yuille-Barr D. The efficacy of topical citrate after alkali injury is dependent on the period of time it is administered. Invest Ophthalmol Vis Sci 1989 Jun;30(6):1062–1068.
  • Paterson CA, Williams RN, Parker AV. Characteristics of polymorphonuclear leukocyte infiltration into the alkali burned eye and the influence of sodium citrate. Exp Eye Res 1984 Dec;39(6):701–708.
  • Reim M, Beil KH, Kammerer G, Krehwinkel S. Influence of systemic ascorbic acid treatment on metabolite levels after regeneration of the corneal epithelium following mild alkali burns. Graefes Arch Clin Exp Ophthalmol 1982;218(2):99–102.
  • Pfister RR, Nicolaro ML, Paterson CA. Sodium citrate reduces the incidence of corneal ulcerations and perforations in extreme alkali-burned eyes–acetylcysteine and ascorbate have no favorable effect. Invest Ophthalmol Vis Sci 1981 Sep;21(3):486–490.
  • Brodovsky SC, McCarty CA, Snibson G, Loughnan M, Sullivan L, Daniell M, et al. Management of alkali burns: an 11-year retrospective review. Ophthalmology 2000 Oct;107(10):1829–1835.
  • Mackway-Jones K, Marsden J. Ascorbate for alkali burns to the eye. Emerg Med J 2003 Sep;20(5):465–466.
  • Hamill CE, Bozorg S, Peggy Chang HY, Lee H, Sayegh RR, Shukla AN, et al. Corneal alkali burns: a review of the literature and proposed protocol for evaluation and treatment. Int Ophthalmol Clin 2013 Fall;53(4):185–194.
  • Cade F, Paschalis EI, Regatieri CV, Vavvas DG, Dana R, Dohlman CH. Alkali burn to the eye: protection using TNF-alpha inhibition. Cornea 2014 Apr;33(4):382–389.
  • Ferrari G, Bignami F, Giacomini C, Franchini S, Rama P. Safety and efficacy of topical infliximab in a mouse model of ocular surface scarring. Invest Ophthalmol Vis Sci 2013 Mar 1;54(3):1680–1688.
  • Lu P, Li L, Liu G, Baba T, Ishida Y, Nosaka M, et al. Critical role of TNF-alpha-induced macrophage VEGF and iNOS production in the experimental corneal neovascularization. Invest Ophthalmol Vis Sci 2012 Jun 14;53(7):3516–3526.
  • Sari ES, Yazici A, Aksit H, Yay A, Sahin G, Yildiz O, et al. Inhibitory effect of sub-conjunctival tocilizumab on alkali burn induced corneal neovascularization in rats. Curr Eye Res 2015 Jan;40(1):48–55.
  • Sakimoto T. Potential Application of Biological Products for the Treatment of Ocular Surface Inflammation. Cornea 2015 Nov;34 Suppl 11:S153–S157.
  • Saika S, Miyamoto T, Yamanaka O, Kato T, Ohnishi Y, Flanders KC, et al. Therapeutic effect of topical administration of SN50, an inhibitor of nuclear factor-kappaB, in treatment of corneal alkali burns in mice. Am J Pathol 2005 May;166(5):1393–1403.
  • Bignami F, Giacomini C, Lorusso A, Aramini A, Rama P, Ferrari G. NK1 receptor antagonists as a new treatment for corneal neovascularization. Invest Ophthalmol Vis Sci 2014 Sep 16;55(10):6783–6794.
  • Yamada J, Dana MR, Sotozono C, Kinoshita S. Local suppression of IL-1 by receptor antagonist in the rat model of corneal alkali injury. Exp Eye Res 2003 Feb;76(2):161–167.
  • Kim DW, Lee SH, Shin MJ, Kim K, Ku SK, Youn JK, et al. PEP-1-FK506BP inhibits alkali burn-induced corneal inflammation on the rat model of corneal alkali injury. BMB Rep 2015 Nov;48(11):618–623.
  • Hoffart L, Matonti F, Conrath J, Daniel L, Ridings B, Masson GS, et al. Inhibition of corneal neovascularization after alkali burn: comparison of different doses of bevacizumab in monotherapy or associated with dexamethasone. Clin Experiment Ophthalmol 2010 May;38(4):346–352.
  • Liarakos VS, Papaconstantinou D, Vergados I, Douvali M, Theodossiadis PG. The effect of subconjunctival ranibizumab on corneal and anterior segment neovascularization: study on an animal model. Eur J Ophthalmol 2014 May-Jun;24(3):299–308.
  • Chen WL, Lin CT, Lin NT, Tu IH, Li JW, Chow LP, et al. Subconjunctival injection of bevacizumab (avastin) on corneal neovascularization in different rabbit models of corneal angiogenesis. Invest Ophthalmol Vis Sci 2009 Apr;50(4):1659–1665.
  • Su W, Li Z, Li Y, Lin M, Yao L, Liu Y, et al. Doxycycline enhances the inhibitory effects of bevacizumab on corneal neovascularization and prevents its side effects. Invest Ophthalmol Vis Sci 2011 Nov 25;52(12):9108–9115.
  • Lee SH, Leem HS, Jeong SM, Lee K. Bevacizumab accelerates corneal wound healing by inhibiting TGF-beta2 expression in alkali-burned mouse cornea. BMB Rep 2009 Dec 31;42(12):800–805.
  • Lee KJ, Lee JY, Lee SH, Choi TH. Accelerating repaired basement membrane after bevacizumab treatment on alkali-burned mouse cornea. BMB Rep 2013 Apr;46(4):195–200.
  • Almaliotis D, Koliakos G, Papakonstantinou E, Komnenou A, Thomas A, Petrakis S, et al. Mesenchymal stem cells improve healing of the cornea after alkali injury. Graefes Arch Clin Exp Ophthalmol 2015 Jul;253(7):1121–1135.
  • Holan V, Trosan P, Cejka C, Javorkova E, Zajicova A, Hermankova B, et al. A comparative study of the therapeutic potential of mesenchymal stem cells and limbal epithelial stem cells for ocular surface reconstruction. Stem Cells Transl Med 2015 Sep;4(9):1052–1063.
  • Yao L, Li ZR, Su WR, Li YP, Lin ML, Zhang WX, et al. Role of mesenchymal stem cells on cornea wound healing induced by acute alkali burn. PLoS One 2012;7(2):e30842.
  • Ke Y, Wu Y, Cui X, Liu X, Yu M, Yang C, et al. Polysaccharide hydrogel combined with mesenchymal stem cells promotes the healing of corneal alkali burn in rats. PLoS One 2015 Mar 19;10(3):e0119725.
  • Acar U, Pinarli FA, Acar DE, Beyazyildiz E, Sobaci G, Ozgermen BB, et al. Effect of allogeneic limbal mesenchymal stem cell therapy in corneal healing: role of administration route. Ophthalmic Res 2015;53(2):82–89.
  • Bu P, Vin AP, Sethupathi P, Ambrecht LA, Zhai Y, Nikolic N, et al. Effects of activated omental cells on rat limbal corneal alkali injury. Exp Eye Res 2014 Apr;121:143–146.
  • Choi JA, Choi JS, Joo CK. Effects of amniotic membrane suspension in the rat alkali burn model. Mol Vis 2011 Feb 5;17:404–412.
  • Jiang A, Li C, Gao Y, Zhang M, Hu J, Kuang W, et al. In vivo and in vitro inhibitory effect of amniotic extraction on neovascularization. Cornea 2006 Dec;25(10 Suppl 1):S36–S40.
  • Herretes S, Suwan-Apichon O, Pirouzmanesh A, Reyes JM, Broman AT, Cano M, et al. Use of topical human amniotic fluid in the treatment of acute ocular alkali injuries in mice. Am J Ophthalmol 2006 Aug;142(2):271–278.
  • Mills CD. M1 and M2 Macrophages: oracles of health and disease. Crit Rev Immunol 2012;32(6):463–488.
  • Shakiba Y, Mansouri K, Arshadi D, Rezaei N. Corneal neovascularization: molecular events and therapeutic options. Recent Pat Inflamm Allergy Drug Discov 2009 Nov;3(3):221–231.
  • Uchiyama M, Shimizu A, Masuda Y, Nagasaka S, Fukuda Y, Takahashi H. An ophthalmic solution of a peroxisome proliferator-activated receptor gamma agonist prevents corneal inflammation in a rat alkali burn model. Mol Vis 2013 Nov 1;19:2135–2150.
  • Han Y, Shao Y, Lin Z, Qu YL, Wang H, Zhou Y, et al. Netrin-1 simultaneously suppresses corneal inflammation and neovascularization. Invest Ophthalmol Vis Sci 2012 Mar 9;53(3):1285–1295.
  • Den S, Sotozono C, Kinoshita S, Ikeda T. Efficacy of early systemic betamethasone or cyclosporin A after corneal alkali injury via inflammatory cytokine reduction. Acta Ophthalmol Scand 2004 Apr;82(2):195–199.
  • Jiang TS, Cai L, Ji WY, Hui YN, Wang YS, Hu D, et al. Reconstruction of the corneal epithelium with induced marrow mesenchymal stem cells in rats. Mol Vis 2010 Jul 14;16:1304–1316.
  • Figueroa-Ortiz LC, Martin Rodriguez O, Garcia-Ben A, Garcia-Campos J. Neovascular growth in an experimental alkali corneal burn model. Arch Soc Esp Oftalmol 2014 Aug;89(8):303–307.
  • Liu X, Lin Z, Zhou T, Zong R, He H, Liu Z, et al. Anti-angiogenic and anti-inflammatory effects of SERPINA3K on corneal injury. PLoS One 2011 Jan 31;6(1):e16712.
  • Maurice DM. The structure and transparency of the cornea. J Physiol 1957 Apr 30;136(2):263–286.
  • Goldman JN, Benedek GB, Dohlman CH, Kravitt B. Structural alterations affecting transparency in swollen human corneas. Invest Ophthalmol 1968 Oct;7(5):501–519.
  • Goldman JN, Benedek GB. The relationship between morphology and transparency in the nonswelling corneal stroma of the shark. Invest Ophthalmol 1967 Dec;6(6):574–600.
  • Saika S, Ooshima A, Shima K, Tanaka S, Ohnishi Y. Collagen types in healing alkali-burned corneal stroma in rabbits. Jpn J Ophthalmol 1996;40(3):303–309.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.