654
Views
45
CrossRef citations to date
0
Altmetric
Original Articles

Electro-spun Membranes as Scaffolds for Human Corneal Endothelial Cells

, ORCID Icon, , , , , , & show all
Pages 1-11 | Received 20 Feb 2017, Accepted 03 Sep 2017, Published online: 27 Dec 2017

References

  • Edelhauser HF. The balance between corneal transparency and edema: the Proctor Lecture. Invest Ophthalmol Vis Sci. 2006;47(5):1754–67. doi:10.1167/iovs.05-1139.
  • Anshu A, Price MO, Tan DT, Price FW Jr. Endothelial keratoplasty: a revolution in evolution. Surv Ophthalmol. 2012;57(3):236–52. doi:10.1016/j.survophthal.2011.10.005.
  • Maeno A, Naor J, Lee HM, Hunter WS, Rootman DS. Three decades of corneal transplantation: indications and patient characteristics. Cornea. 2000;19(1):7–11. doi:10.1097/00003226-200001000-00002.
  • Van Essen TH, Roelen DL, Williams KA, Jager MJ. Matching for Human Leukocyte Antigens (HLA) in corneal transplantation - to do or not to do. Prog Retin Eye Res. 2015;46:84–110. doi:10.1016/j.preteyeres.2015.01.001.
  • Jhanji V, Mehta JS, Sharma N, Sharma B, Vajpayee RB. Targeted corneal transplantation. Curr Opin Ophthalmol. 2012;23(4):324–29. doi:10.1097/ICU.0b013e32835484a1.
  • De By TM. Shortage in the face of plenty: improving the allocation of corneas for transplantation. Dev Ophthalmol. 2003;36:56–61.
  • Baum JL, Niedra R, Davis C, Yue BY. Mass culture of human corneal endothelial cells. Arch Ophthalmol. 1979;97(6):1136–40. doi:10.1001/archopht.1979.01020010590018.
  • Soh YQ, Peh GS, Mehta JS. Translational issues for human corneal endothelial tissue engineering. J Tissue Eng Regen Med. 2016; doi:10.1002/term.2131.
  • Koizumi N, Sakamoto Y, Okumura N, Tsuchiya H, Torii R, Cooper LJ, et al. Cultivated corneal endothelial transplantation in a primate: possible future clinical application in corneal endothelial regenerative medicine. Cornea. 2008;27(Suppl 1):S48–55. doi:10.1097/ICO.0b013e31817f2298.
  • Bayyoud T, Thaler S, Hofmann J, Maurus C, Spitzer MS, Bartz-Schmidt KU, et al. Decellularized bovine corneal posterior lamellae as carrier matrix for cultivated human corneal endothelial cells. Curr Eye Res. 2012;37(3):179–86. doi:10.3109/02713683.2011.644382.
  • Yoshida J, Oshikata-Miyazaki A, Yokoo S, Yamagami S, Takezawa T, Amano S. Development and evaluation of porcine atelocollagen vitrigel membrane with a spherical curve and transplantable artificial corneal endothelial grafts. Invest Ophthalmol Vis Sci. 2014;55(8):4975–81. doi:10.1167/iovs.14-14211.
  • Fan T, Ma X, Zhao J, Wen Q, Hu X, Yu H, et al. Transplantation of tissue-engineered human corneal endothelium in cat models. Mol Vis. 2013;19:400–07.
  • Yoeruek E, Bayyoud T, Maurus C, Hofmann J, Spitzer MS, Bartz-Schmidt KU, et al. Decellularization of porcine corneas and repopulation with human corneal cells for tissue-engineered xenografts. Acta Ophthalmol. 2012;90(2):e125–31. doi:10.1111/j.1755-3768.2011.02261.x.
  • Ozcelik B, Brown KD, Blencowe A, Ladewig K, Stevens GW, Scheerlinck JP, et al. Biodegradable and biocompatible poly(ethylene glycol)-based hydrogel films for the regeneration of corneal endothelium. Adv Health Mater. 2014;3(9):1496–507. doi:10.1002/adhm.201400045.
  • Young TH, Wang IJ, Hu FR, Wang TJ. Fabrication of a bioengineered corneal endothelial cell sheet using chitosan/polycaprolactone blend membranes. Colloids Surf B Biointerfaces. 2014;116:403–10. doi:10.1016/j.colsurfb.2014.01.024.
  • Kimoto M, Shima N, Yamaguchi M, Hiraoka Y, Amano S, Yamagami S. Development of a bioengineered corneal endothelial cell sheet to fit the corneal curvature. Invest Ophthalmol Vis Sci. 2014;55(4):2337–43. doi:10.1167/iovs.13-13167.
  • Salehi S, Grunert AK, Bahners T, Gutmann JS, Steuhl KP, Czugala M, et al. [New nanofibrous scaffold for corneal tissue engineering]. Klin Monbl Augenheilkd. 2014;231(6):626–30.
  • Palchesko RN, Lathrop KL, Funderburgh JL, Feinberg AW. In vitro expansion of corneal endothelial cells on biomimetic substrates. Sci Rep. 2015;5:7955. doi:10.1038/srep07955.
  • Muhammad R, Peh GS, Adnan K, Law JB, Mehta JS, Yim EK. Micro- and nano-topography to enhance proliferation and sustain functional markers of donor-derived primary human corneal endothelial cells. Acta Biomater. 2015;19:138–48. doi:10.1016/j.actbio.2015.03.016.
  • Gao X, Liu W, Han B, Wei X, Yang C. Preparation and properties of a chitosan-based carrier of corneal endothelial cells. J Mater Sci Mater Med. 2008;19(12):3611–19. doi:10.1007/s10856-008-3508-0.
  • Fuest M, Yam GH, Peh GS, Mehta JS. Advances in corneal cell therapy. Regen Med. 2016;11(6):601–15. doi:10.2217/rme-2016-0054.
  • Rosic R, Pelipenko J, Kristl J, Kocbeck P, Baumgartner S. Properties, engineering and applications of polymeric nanofibers: current research and future advances. Chem Biochem Eng Q. 2012;26(4):417–25.
  • Luo CJ, Stoyanov SD, Stride E, Pelan E, Edirisinghe M. Electrospinning versus fibre production methods: from specifics to technological convergence. Chem Soc Rev. 2012;41(13):4708–35. doi:10.1039/c2cs35083a.
  • Zander NE, Orlicki JA, Rawlett AM, Beebe TP Jr. Electrospun polycaprolactone scaffolds with tailored porosity using two approaches for enhanced cellular infiltration. J Mater Sci Mater Med. 2013;24(1):179–87. doi:10.1007/s10856-012-4771-7.
  • Valtink M, Gruschwitz R, Funk RH, Engelmann K. Two clonal cell lines of immortalized human corneal endothelial cells show either differentiated or precursor cell characteristics. Cells Tissues Organs. 2008;187(4):286–94. doi:10.1159/000113406.
  • Bednarz J, Teifel M, Friedl P, Engelmann K. Immortalization of human corneal endothelial cells using electroporation protocol optimized for human corneal endothelial and human retinal pigment epithelial cells. Acta Ophthalmol Scand. 2000;78(2):130–36. doi:10.1034/j.1600-0420.2000.078002130.x.
  • Liang Y, Liu W, Han B, Yang C, Ma Q, Zhao W, et al. Fabrication and characters of a corneal endothelial cells scaffold based on chitosan. J Mater Sci Mater Med. 2011;22(1):175–83. doi:10.1007/s10856-010-4190-6.
  • Chen J, Yan C, Zhu M, Yao Q, Shao C, Lu W, et al. Electrospun nanofibrous SF/P(LLA-CL) membrane: a potential substratum for endothelial keratoplasty. Int J Nanomedicine. 2015;10:3337–50.
  • Khanlou HM, Ang BC, Talebian S, Afifi AM, Andriyana A. Electrospinning of polymethyl methacrylate nanofibers: optimization of processing parameters using the Taguchi design of experiments. Text Res J. 2014;85(4):356–368.
  • Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed. 2007;46(30):5670–703. doi:10.1002/(ISSN)1521-3773.
  • Zeng J, Haoqing H, Schaper A, Wendorff Joachim H, Greiner A. Poly-L-lactide nanofibers by electrospinning – Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. e-Polymers2003. 102.
  • Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer. 1999;40(16):4585–92. doi:10.1016/S0032-3861(99)00068-3.
  • Gupta P, Elkins C, Long TE, Wilkes GL. Electrospinning of linear homopolymers of poly (methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer. 2005;46(13):4799–810. doi:10.1016/j.polymer.2005.04.021.
  • Wu XS, Wang N. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: Biodegradation. J Biomater Sci Polym Ed. 2001;12(1):21–34.
  • Ramdhanie LI, Aubuchon SR, Boland ED, Knapp DC, Barnes CP, Simpson DG, et al. Thermal and mechanical characterization of electrospun blends of poly(lactic acid) and poly(glycolic acid). Polym J. 2006;38(11):1137–45. doi:10.1295/polymj.PJ2006062.
  • You Y, Min BM, Lee SJ, Lee TS, Park WH. In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly (lactide‐co‐glycolide). J Appl Polym Sci. 2005;95(2):193–200. doi:10.1002/app.21116.
  • Hollick EJ, Spalton DJ, Ursell PG, Pande MV. Biocompatibility of poly(methyl methacrylate), silicone, and AcrySof intraocular lenses: randomized comparison of the cellular reaction on the anterior lens surface. J Cataract Refract Surg. 1998;24(3):361–66. doi:10.1016/S0886-3350(98)80324-6.
  • Nosé W, Neves RA, Burris TE, Schanzlin DJ, Belfort R. Intrastromal corneal ring: 12-month sighted myopic eyes. J Refract Surg. 1996;12(1):20–28.
  • Ma A, Zhao B, Bentley AJ, Brahma A, MacNeil S, Martin FL, et al. Corneal epithelialisation on surface-modified hydrogel implants: artificial cornea. J Mater Sci Mater Med. 2011;22(3):663–70. doi:10.1007/s10856-011-4244-4.
  • Sun H, Mei L, Song C, Cui X, Wang P. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials. 2006;27(9):1735–40. doi:10.1016/j.biomaterials.2005.09.019.
  • Garrigues NW, Little D, Sanchez-Adams J, Ruch DS, Guilak F. Electrospun cartilage-derived matrix scaffolds for cartilage tissue engineering. J Biomed Mater Res A. 2014;102(11):3998–4008. doi:10.1002/jbm.a.35068.
  • Filipczak K, Wozniak M, Ulanski P, Olah L, Przybytniak G, Olkowski RM, et al. Poly(epsilon-caprolactone) biomaterial sterilized by E-beam irradiation. Macromol Biosci. 2006;6(4):261–73. doi:10.1002/mabi.200500215.
  • Li D, Wang Y, Xia Y. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett. 2003;3(8):1167–71. doi:10.1021/nl0344256.
  • Meng ZX, Wang YS, Ma C, Zheng W, Li L, Zheng YF. Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater Sci Engineering: C. 2010;30(8):1204–10. doi:10.1016/j.msec.2010.06.018.
  • Xu C, Inai R, Kotaki M, Ramakrishna S. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng. 2004;10(7–8):1160–68. doi:10.1089/ten.2004.10.1160.
  • Bashur CA, Dahlgren LA, Goldstein AS. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes. Biomaterials. 2006;27(33):5681–88. doi:10.1016/j.biomaterials.2006.07.005.
  • Zhang K, Yin A, Huang C, Wang C, Mo X, Al-Deyab SS, et al. Degradation of electrospun SF/P(LLA-CL) blended nanofibrous scaffolds in vitro. Polym Degrad Stab. 2011;96(12):2266–75. doi:10.1016/j.polymdegradstab.2011.08.011.
  • Hadlock T, Singh S, Vacanti JP, McLaughlin BJ. Ocular cell monolayers cultured on biodegradable substrates. Tissue Eng. 1999;5(3):187–96. doi:10.1089/ten.1999.5.187.
  • Kim EY, Tripathy N, Cho SA, Lee D, Khang G. Collagen type I–PLGA film as an efficient substratum for corneal endothelial cells regeneration. J Tissue Eng Regen Med. 2016; doi:10.1002/term.2145.
  • Deshpande P, McKean R, Blackwood KA, Senior RA, Ogunbanjo A, Ryan AJ, et al. Using poly(lactide-co-glycolide) electrospun scaffolds to deliver cultured epithelial cells to the cornea. Regen Med. 2010;5(3):395–401. doi:10.2217/rme.10.16.
  • Sharma S, Mohanty S, Gupta D, Jassal M, Agrawal AK, Tandon R. Cellular response of limbal epithelial cells on electrospun poly-epsilon-caprolactone nanofibrous scaffolds for ocular surface bioengineering: a preliminary in vitro study. Mol Vis. 2011;17:2898–910.
  • Fessel G, Cadby J, Wunderli S, Van Weeren R, Snedeker JG. Dose- and time-dependent effects of genipin crosslinking on cell viability and tissue mechanics – Toward clinical application for tendon repair. Acta Biomater. 2014;10(5):1897–906. doi:10.1016/j.actbio.2013.12.048.
  • Gough JE, Scotchford CA, Downes S. Cytotoxicity of glutaraldehyde crosslinked collagen/poly (vinyl alcohol) films is by the mechanism of apoptosis. J Biomed Mater Res A. 2002;61(1):121–30. doi:10.1002/jbm.10145.
  • Barnes CP, Pemble Iv CW, Brand DD, Simpson DG, Bowlin GL. Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol. Tissue Eng. 2007;13(7):1593–605. doi:10.1089/ten.2006.0292.
  • Gotze T, Valtink M, Nitschke M, Gramm S, Hanke T, Engelmann K, et al. Cultivation of an immortalized human corneal endothelial cell population and two distinct clonal subpopulations on thermo-responsive carriers. Graefes Arch Clin Exp Ophthalmol. 2008;246(11):1575–83. doi:10.1007/s00417-008-0904-6.
  • Frausto RF, Le DJ, Aldave AJ. Transcriptomic analysis of cultured corneal endothelial cells as a validation for their use in cell replacement therapy. Cell Transplant. 2016;25(6):1159–76. doi:10.3727/096368915X688948.
  • Nitschke M, Gramm S, Gotze T, Valtink M, Drichel J, Voit B, et al. Thermo-responsive poly(NiPAAm-co-DEGMA) substrates for gentle harvest of human corneal endothelial cell sheets. J Biomed Mater Res A. 2007;80(4):1003–10. doi:10.1002/jbm.a.31098.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.