295
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Signal Alteration in the Optic Nerve Head on 3D T2-weighted MRI: a Potential Neuroimaging Sign of Glaucomatous Optic Neuropathy

, , , , & ORCID Icon
Pages 397-405 | Received 29 Jul 2017, Accepted 23 Oct 2017, Published online: 09 Nov 2017

References

  • Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262–67. doi:10.1136/bjo.2005.081224.
  • Kwon YH, Fingert JH, Kuehn MH, Alward WL. Primary open-angle glaucoma. N Engl J Med. 2009;360:1113–24. doi:10.1056/NEJMra0804630.
  • Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR. Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol. 1983;95:673–91. doi:10.1016/0002-9394(83)90389-6.
  • Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005;24:39–73. doi:10.1016/j.preteyeres.2004.06.001.
  • Chaturvedi N, Hedley-Whyte ET, Dreyer EB. Lateral geniculate nucleus in glaucoma. Am J Ophthalmol. 1993;116:182–88. doi:10.1016/S0002-9394(14)71283-8.
  • Weber AJ, Chen H, Hubbard WC, Kaufman PL. Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus. Invest Ophthalmol Vis Sci. 2000;41:1370–79.
  • Yucel YH, Zhang Q, Gupta N, Kaufman PL, Weinreb RN. Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol. 2000;118:378–84. doi:10.1001/archopht.118.3.378.
  • Gupta N, Ang LC, Noel De Tilly L, Bidaisee L, Yh Y. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol. 2006;90:674–78. doi:10.1136/bjo.2005.086769.
  • Chang EE, Goldberg JL. Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology. 2012;119:979–86. doi:10.1016/j.ophtha.2011.11.003.
  • Gupta N, Yucel YH. Glaucoma as a neurodegenerative disease. Curr Opin Ophthalmol. 2007;18:110–14. doi:10.1097/ICU.0b013e3280895aea.
  • Diogo MC, Jager MJ, Ferreira TA. CT and MR imaging in the diagnosis of scleritis. AJNR Am J Neuroradiol. 2016;37:2334–39. doi:10.3174/ajnr.A4890.
  • Suh SY, Clark RA, Le A, Demer JL. Extraocular muscle compartments in superior oblique palsy. Invest Ophthalmol Vis Sci. 2016;57:5535–40.
  • Beenakker JW, Ferreira TA, Soemarwoto KP, Genders SW, Teeuwisse WM, Webb AG, Luyten GP. Clinical evaluation of ultra-high-field MRI for three-dimensional visualisation of tumour size in uvealmelanoma patients, with direct relevance to treatment planning. MAGMA. 2016;29:571–77. doi:10.1007/s10334-016-0529-4.
  • Paul K, Graesl A, Rieger J, Lysiak D, Huelnhagen T, Winter L, Heidemann R, Lindner T, Hadlich S, Zimpfer A, et al. Diffusion-sensitized ophthalmic magnetic resonance imaging free of geometric distortion at 3.0 and 7.0T: a feasibility study in healthy subjects and patients with intraocular mass. Invest Radiol. 2015;50(5):309–21. doi:10.1097/RLI.0000000000000129.
  • Beenakker JW, Shamonin DP, Webb AG, Luyten GP, Stoel BC. Automated retinal topographic maps measured with magnetic resonance imaging. Invest Ophthalmol Vis Sci. 2015;56:1033–39. doi:10.1167/iovs.14-15161.
  • Pope JM, Verkicharia PK, Sepehrband F, Suheimat M, Schmid KL, Atchison DA. Three-dimensional MRI study of the relationship between eye dimensions, retinal shape and myopia. Biomed Opt Express. 2017;5:2386–95. doi:10.1364/BOE.8.002386.
  • Gupta N, Greenberg G, De Tilly LN, Gray B, Polemidiotis M, Yucel YH. Atrophy of the lateral geniculate nucleus in human glaucoma detected by magnetic resonance imaging. Br J Ophthalmol. 2009;93:56–60. doi:10.1136/bjo.2008.138172.
  • Boucard CC, Hernowo AT, Maguire RP, Jansonius NM, Roerdink JB, Hooymans JM, Cornelissen FW. Changes in cortical grey matter density associated with long-standing retinal visual field defects. Brain. 2009;132:1898–906. doi:10.1093/brain/awp119.
  • Hernowo AT, Boucard CC, Jansonius NM, Hooymans JM, Cornelissen FW. Automated morphometry of the visual pathway in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2011;52:2758–66. doi:10.1167/iovs.10-5682.
  • Dai H, Mu KT, Qi JP, Wang CY, Zhu WZ, Xia LM, Chen ZQ, Zhang H, Ai F, Morelli JN. Assessment of lateral geniculate nucleus atrophy with 3T MR imaging and correlation with clinical stage of glaucoma. Am J Neuroradiol. 2011;32:1347–53. doi:10.3174/ajnr.A2486.
  • Zhang YQ, Li J, Xu L, Zhang L, Wang ZC, Yang H, Chen CX, Wu XS, Jonas JB. Anterior visual pathway assessment by magnetic resonance imaging in normal-pressure glaucoma. Acta Ophthalmol Scand. 2012;90:e295–302. doi:10.1111/j.1755-3768.2011.02346.x.
  • Zikou AK, Kitsos G, Tzarouchi LC, Astrakas L, Alexiou GA, Argyropoulou MI. Voxel-based morphometry and diffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study. Am J Neuroradiol. 2012;33:128–34. doi:10.3174/ajnr.A2714.
  • Yu L, Xie B, Yin X, Liang M, Evans AC, Wang J, Dai C. Reduced cortical thickness in primary open-angle glaucoma and its relationship to the retinal nerve fiber layer thickness. PloS One. 2013;89:e73208. doi:10.1371/journal.pone.0073208.
  • Lee JY, Jeong HJ, Lee JH, Kim YJ, Kim EY, Kim YY, Ryu T, Cho ZH, Kim YB. An investigation of lateral geniculate nucleus volume in patients with primary open-angle glaucoma using 7 tesla magnetic resonance imaging. Invest Ophthalmol Vis Sci. 2014;55:3468–76. doi:10.1167/iovs.14-13902.
  • Altobelli S, Toschi N, Mancino R, Nucci C, Schillaci O, Floris R, Garaci F. Brain imaging in glaucoma from clinical studies to clinical practice. Prog Brain Res. 2015;221:159–75.
  • Zhou W, Muir ER, Chalfin S, Nagi KS, Duong TQ. MRI study of the posterior visual pathways in primary open angle Glaucoma. J Glaucoma. 2017;26:173–81.
  • Wilczek M. THE LAMINA CRIBROSA AND ITS NATURE. Br J Ophthalmol. 1947;31:551–65. doi:10.1136/bjo.31.9.551.
  • Krueger PC, Stachs O, Hadlich S, Falke K, Erbersdobler A, Hosten N, Langner S. MR Microscopy of the human eye at 7.1 T and correlation with histopathology-proof of principle. Orbit. 2012;31:390–93. doi:10.3109/01676830.2012.723783.
  • Lindner T, Langner S, Graessl A, Rieger J, Schwerter M, Muhle M, Lysiak D, Kraus O, Wuerfel J, Guthoff RF,et al. High spatial resolution in vivo magnetic resonance imaging of the human eye, orbit, nervus opticus and optic nerve sheath at 7.0 Tesla. Exp Eye Res. 2014;125:89–94. doi:10.1016/j.exer.2014.05.017.
  • Anderson DR, Patella VM. Automated static perimetry. St Louis: Mosby; 1999.
  • Burgoyne CF. A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Exp Eye Res. 2011;93:120–32. doi:10.1016/j.exer.2010.09.005.
  • Schlingemann RO, Van Hinsbergh VW. Role of vascular permeability factor/vascular endothelial growth factor in eye disease. Br J Ophthalmol. 1997;81:501–12. doi:10.1136/bjo.81.6.501.
  • Arend O, Remky A, Plange N, Kaup M, Schwartz B. Fluorescein leakage of the optic disc in glaucomatous optic neuropathy. Graefes Arch Clin and Exp Ophthalmol. 2005;243:659–64. doi:10.1007/s00417-004-1092-7.
  • Radius RL, Anderson DR. Breakdown of the normal optic nerve head blood-brain barrier following acute elevation of intraocular pressure in experimental animals. Invest Ophthalmol Vis Sci. 1980;19:244–55.
  • Fazekas F, Kleinert R, Offenbacher H, Schmidt R, Kleinert G Payer F, Radner H, Lechner H. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology. 1993;43:1683–89. doi:10.1212/WNL.43.9.1683.
  • Pantoni L, Garcia JH. Pathogenesis of leukoaraiosis: a review. Stroke. 1997;28:652–59. doi:10.1161/01.STR.28.3.652.
  • O’Sullivan M, Lythgoe DJ, Pereira AC, Summers PE, Jarosz JM, Williams SC, Markus HS. Patterns of cerebral blood flow reduction in patients with ischemic leukoaraiosis. Neurology. 2002;59:321–26. doi:10.1212/WNL.59.3.321.
  • Topakian R, Barrick TR, Howe FA, Markus HS. Blood-brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leucoaraiosis. J Neurol Neurosurg Psychiatry. 2010;81:192–97. doi:10.1136/jnnp.2009.172072.
  • Leung DY, Tham CC, Li FC, Kwong YY, Chi SC, Lam DS. Silent cerebral infarct and visual field progression in newly diagnosed normal-tension glaucoma: a cohort study. Ophthalmology. 2009;116:1250–56. doi:10.1016/j.ophtha.2009.02.003.
  • Kim M, Park KH, Kwon JW, Jeoung JW, Kim TW, Kim DM. Retinal nerve fiber layer defect and cerebral small vessel disease. Invest Ophthalmol Vis Sci. 2011;52:6882–86. doi:10.1167/iovs.11-7276.
  • Stroman GA, Stewart WC, Golnik KC, Cure JK, Olinger RE. Magnetic resonance imaging in patients with low-tension glaucoma. Arch Ophthalmol. 1995;113:168–72. doi:10.1001/archopht.1995.01100020050027.
  • Park SC, Brumm J, Furlanetto RL, Netto C, Liu Y, Tello C, Liebmann JM, Ritch R. Lamina cribrosa depth in different stages of glaucoma. Invest Ophthalmol Vis Sci. 2015;56:2059–64. doi:10.1167/iovs.14-15540.
  • Crab DP, Smith ND, Rauscher FG, Chisholm CM, Barbur JL, Edgar DF, Garway-Heath DF. Exploring eye movements in patients with glaucoma when viewing a driving scene. PLos One. 2010;16:e9710. doi:10.1371/journal.pone.0009710.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.