373
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of Agreement of Retinal-Layer Thickness Measures Derived from the Segmentation of Horizontal and Vertical Spectralis OCT Macular Scans

, , , , , , , , , , , , , & show all
Pages 415-423 | Received 27 Jun 2017, Accepted 12 Nov 2017, Published online: 14 Dec 2017

References

  • Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372:1502–17. doi:10.1016/S0140-6736(08)61620-7.
  • Dutta R, Trapp BD. Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Prog Neurobiol. 2011;93:1–12. doi:10.1016/j.pneurobio.2010.09.005.
  • Van Waesberghe JHTM, Kamphorst W, De Groot CJA, Van Walderveen MAA, Castelijns JA, Ravid R, Lycklama Nijeholt GJ, Van der Valk P, Polman CH, Thompson AJ, et al. Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol. 1999;46:747–54. doi:10.1002/(ISSN)1531-8249.
  • Miller DH, Grossman RI, Reingold SC, McFarland HF. The role of magnetic resonance techniques in understanding and managing multiple sclerosis. Brain. 1998;121:3–24. doi:10.1093/brain/121.1.3.
  • Filippi M. Campi A, Dousset V, Baratti C, Martinelli V, Canal N, Scotti G, Comi G. Magnetization transfer imaging study of normal appearing white matter in multiple sclerosis. Neurology. 1995;45:478–82. doi:10.1212/WNL.45.3.478.
  • Grazioli E, Zivadinov R, Weinstock-Guttman B, Lincoff N, Baier M, Wong JR, Hussein S, Cox JL, Hojnacki D, Ramanathan M. Retinal nerve fiber layer thickness is associated with brain MRI outcomes in multiple sclerosis. J Neurol Sci. 2008;268 (1–2):12–17. doi:10.1016/j.jns.2007.10.020.
  • Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee M, Flotte T, Gregory K, Puliafito C, et al. Optical coherence tomography. Science. 1991;254 (5035):1178–81. doi:10.1126/science.1957169.
  • Mehreen A, Duke JS. Optical coherence tomography – current and future applications. Curr Ophin Ophthalmol. 2013;24 (3):213–21. doi:10.1097/ICU.0b013e32835f8bf8.
  • Mrejen S, Spaide RF. Optical coherence tomography: imaging of the choroid and beyond. Surv Ophthalmol. 2013;58 (5):387–429. doi:10.1016/j.survophthal.2012.12.001.
  • Saidha S, Syc BS, Durbin MK, Eckstein C, Oakley JD, Meyer SA, Conger A, Frohman TC, Newsome S, Ratchford JN, et al. Visual dysfunction in multiple sclerosis correlates better with optical coherence tomography derived estimates of macular ganglion cell layer thickness than peripapillary retinal nerve fiber layer thickness. Mult Scler. 2011;17:1449–63. doi:10.1177/1352458511418630.
  • Syc BC, Saidha S, Newsome S, Ratchford JN, Levy M, Ford ET, Crainiceanu CM, Durbin MK, Oakley JD, Meyer SA, et al. Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. Brain. 2012;135:521–33. doi:10.1093/brain/awr264.
  • Ratchford JN, Saidha S, Sotirchos ES, Oh JA, Seigo MA, Eckstein C, Durbin MK, Oakley JD, Meyer SA, Conger A, et al. Active MS is associated with accelerated retinal ganglion cell/inner plexiform layer thinning. Neurology. 2013;80:47–54. doi:10.1212/WNL.0b013e31827b1a1c.
  • Varga BE, Gao W, Laurik KL, Tatrai E, Simo M, Somfai GM, Cabrera DeBuc D, Stieger K. Investigating tissue optical properties and texture descriptors of the retina in patients with multiple sclerosis. Plos One. 2015;10 (11):1–20. doi:10.1371/journal.pone.0143711.
  • Saidha S, Calabresi PA. Optical coherence tomography should be part of the routine monitoring of patients with multiple sclerosis : yes. Mult Scler. 2014;10:1296–98. doi:10.1177/1352458514541509.
  • Saidha S, Al-Louzi O, Ratchford JN, Bhargava P, Oh J, Newsome SD, Prince JL, Pham D, Roy S, Van Zijl P, et al. Optical coherence tomography reflects brain atrophy in multiple sclerosis: a four-year study. Ann Neurol. 2016;78:801–13. doi:10.1002/ana.v78.5.
  • Green AJ, Mcquaid S, Hauser SL, Allen IV, Lyness R. Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain. 2010;133:1591–601. doi:10.1093/brain/awq080.
  • Seigo MA, Sotirchos ES, Newsome S, Babiarz A, Eckstein C, Ford ET, Oakley JD, Syc SB, Frohman TC, Ratchford JN, et al. In vivo assessment of retinal neuronal layers in multiple sclerosis with manual and automated optical coherence tomography segmentation techniques. J Neurol. 2012;259:2119–30. doi:10.1007/s00415-012-6466-x.
  • Kafieh R, Rabbani H, Kermani S. A review of algorithms for segmentation of optical coherence tomography from retina. J Med Signals Sens. 2013;3 (1):45–60.
  • Tian J, Varga B, Tatrai E, Fanni P, Somfai GM, Smiddy WE, Debuc DC. Performance evaluation of automated segmentation software on optical coherence tomography volume data. J Biophotonics. 2016;9 (5):478–89. doi:10.1002/jbio.v9.5.
  • Kolb H. Simple anatomy of the retina. 2005 May 1 [Updated 2012 Jan 31]. In: Kolb H, Fernandez E, Nelson R, eds. Webvision: the organization of the retina and visual system [online book]. Salt Lake City (UT): University of Utah Health Sciences Center; 1995. p. 1–24.
  • Lang A, Carass A, Hauser M, Sotirchos ES, Calabresi PA, Ying HS, Prince JL. Retinal layer segmentation of macular OCT images using boundary classification. Biomed Opt Express. 2013;4:518–33. doi:10.1364/BOE.4.001133.
  • Garcia-Martin E, Polo V, Larrosa JM, Marques ML, Herrero R, Martin J, Ara JR, Fernandez J, Pablo LE. Retinal layer segmentation in patients with multiple sclerosis using spectral domain optical coherence tomography. Ophthalmology. 2014;121:573–79. doi:10.1016/j.ophtha.2013.09.035.
  • Tian J, Varga B, Somfai GM, Lee W, Smiddy WE. Real-time automatic segmentation of optical coherence tomography volume data of the macular region. Plos One. 2015;10 (8):1–20. doi:10.1371/journal.pone.0133908.
  • Bhargava P, Lang A, Al-Louzi O, Carass A, Prince J, Calabresi PA, Saidha S. Applying an open-source segmentation algorithm to different oct devices in multiple sclerosis patients and healthy controls: implications for clinical trials. Mult Scler Int. 2015;2015:1–10. doi:10.1155/2015/136295.
  • Wolf-Schnurrbusch UEK, Ceklic L, Brinkmann CK, Iliev ME, Frey M, Rothenbuehler SP, Enzmann V, Wolf S. Macular thickness measurements in healthy eyes using six different tomography instruments. Iovs. 2017;50 (7):3432–37.
  • Chiu SJ, Li XT, Nicholas P, Toth CA, Izatt JA, Farsiu S. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt Express. 2010;18 (18):19413–28. doi:10.1364/OE.18.019413.
  • Sotirchos ES, Seigo MA, Calabresi PA, Saidha S. Comparison of point estimates and average thicknesses of retinal layers measured using manual optical coherence tomography segmentation for quantification of retinal neurodegeneration in multiple sclerosis. Curr Eye Res. 2013;38 (1):224–28. doi:10.3109/02713683.2012.722243.
  • de Sisternes L, Jonna G, Moss J, Marmor MF, Leng T, Rubin DL. Automated intraretinal segmentation of SD- OCT images in normal and age-related macular degeneration eyes. Biomed Opt Express. 2017;8 (3):1178–81. doi:10.1364/BOE.8.001926.
  • Oberwahrenbrock T, Weinhold M, Mikolajczak J, Zimmermann H, Paul F, Beckers I, Brandt AU, Linker RA. Reliability of intra-retinal layer thickness estimates. Plos One. 2015;10 (15):1–16. doi:10.1371/journal.pone.0137316.
  • Liu X, Shen M, Huang S, Leng L, Zhu D, Lu F. Repeatability and reproducibility of eight macular intra- retinal layer thicknesses determined by an automated segmentation algorithm using two SD-OCT instruments. Plos One. 2014;9 (2). e87996.
  • Matlach J, Wagner M, Malzahn U, Winfried G. Repeatability of peripapillary retinal nerve fiber layer and inner retinal thickness among two spectral domain optical coherence tomography devices. Invest Ophthalmol Vis Sci. 2014;55 (10):6536–46. doi:10.1167/iovs.14-15072.
  • Ho J, Sull AC, Vuong LN, Chen Y, Liu J, Fujimoto JG, Schuman JS, Duker JS. Assessment of artifacts and reproducibility across spectral and time domain optical coherence tomography devices. Ophthalmology. 2009;116 (10):1960–70. doi:10.1016/j.ophtha.2009.03.034.
  • Menke MN, Dabov S, Knecht P, Sturm V. Reproducibility of retinal thickness measurements in healthy subjects using spectralis optical coherence tomography. Am J Ophthalmol. 2009;147:467–72. doi:10.1016/j.ajo.2008.09.005.
  • Mrejen S, Gallego-Pinazo R, Freund KB, Paques M. Recognition of Henle’s fiber layer on OCT images. Ophthalmology. 2013;120:32–34. doi:10.1016/j.ophtha.2013.01.039.
  • Lujan BJ, Roorda A, Knighton RW, Carroll J. Revealing Henle’s fiber layer using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:1486–92. doi:10.1167/iovs.10-5946.
  • Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, et al. Diagnostic criteria for multiple sclerosis : 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69:292–302. doi:10.1002/ana.22366.
  • Syc BS, Warner CV, Hiremath GS, Farrell SH, Ratchford JN, Conger A, Frohman T, Cutter G, Balcer LJ, Frohman EM, et al. Reproducibility of high-resolution optical coherence tomography in multiple sclerosis. Mult Scler. 2010;16:829–39. doi:10.1177/1352458510371640.
  • Warner CV, Syc SB, Stankiewicz AM, Hiremath G, Farrel SK, Crainiceanu CM, Conger A, Frohman TC, Bisker ER, Balcer LJ, et al. The impact of utilizing different optical coherence tomography devices for clinical purposes and in multiple sclerosis trials. Plos One. 2011;6:8. doi:10.1371/journal.pone.0022947.
  • Tewarie P, Balk L, Costello F, Green A, Martin R, Schippling S, Petzold A, Villoslada P. The OSCAR-IB consensus criteria for retinal OCT quality assessment. PLoS One. 2012;7 (4). doi:10.1371/journal.pone.0034823.
  • Giavarina D. Understanding bland altman analysis. Biochem Medica. 2015;25:141–51. doi:10.11613/BM.2015.015.
  • Lee J, Koh D, Ong CN. Statistical evaluation of agreement between two methods for measuring a quantitative variable. Comput Biol Med. 1989;19:61–70. doi:10.1016/0010-4825(89)90036-X.
  • Miller AR, Roisman L, Zhang Q, Zheng F, Oliveira Dias JF, Yehoshua Z, Schaal KB, Feuer W, Gregori G, Chu Z, et al. Comparison between spectral-domain and swept-source optical coherence tomography angiographic imaging of choroidal neovascularization. Invest Ophthalmol Vis Sci. 2017;58 (3):1499–505. doi:10.1167/iovs.16-20969.
  • Press D. Comparison of choroidal thickness measurements between spectral-domain OCT and swept-source OCT in normal and diseased eyes. Clin Ophthalmol. 2016;10:2271–76. doi:10.2147/OPTH.S117022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.