189
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Corneal Neovascularization: A Combined Approach of Bevacizumab and Suramin Showed Increased Antiangiogenic Effect Through Downregulation of BFGF and P2X2

, , , ORCID Icon & ORCID Icon
Pages 466-473 | Received 23 Jun 2017, Accepted 28 Nov 2017, Published online: 21 Dec 2017

References

  • Chang JH. Corneal neovascularization. Current Opinion in Ophthalmology. 2001;12:242–49.
  • Schmid MK, Bachmann LM, Fas KAG, Job OM, Thiel MA. Efficacy and adverse events of aflibercept, ranibizumab and bevacizumab in age-related macular degeneration: a trade-off analysis. Br J Ophthalmol. 2015;99(2):141–46.
  • Bressler SB, Liu D, Glassman AR, Blodi BA, Castellarin AA, Jampol LM, Kaufman PL, Melia M, Singh H, Wells JA, et al. Change in diabetic retinopathy through 2 years: secondary analysis of a randomized clinical trial comparing aflibercept, bevacizumab and ranibizumab. JAMA Ophthalmol. 2017 Jun 1;135(6):558–68.
  • Erdurmus M, Totan Y. Subconjuntival bevacizumab for corneal neovascularization. Graefe’s Arch Clin Exp Ophthalmol. 2007;245:1577–79.
  • Menzel-Severing J. Emerging techniques to treat corneal neovascularisation. Eye. 2012;26:2–12.
  • Guler M, Yilmaz T, Ozercan I, Elkiran T. The inhibitory effects of trastuzumab on corneal neovascularization. Am J Ophthalmol. 2009;147(4):703–08.
  • Kaya MK, Demir T, Bulu H, Akpolat N, Turqut B. Effects of lapatinib and trastuzumab on vascular endothelial growth factor in experimental corneal neovascularization. Clin Exp Ophthalmol. 2015;43(5):449–57.
  • Lee HS, Chung SK. The effect of subconjunctival suramin on corneal neovascularization in rabbits. Cornea. 2010;29(1):86–92.
  • Lopez ES, Rizzo MM, Croxatto JO, Mazzolini G, Gallo JE. Suramab, a novel antiangiogenic agent, reduces tumor growth and corneal neovascularization. Cancer Chemother Pharmacol. 2011;67(3):723–28.
  • Tártara LI, Palma SD, Allemandi D, Ahumada MI, Llabot JM. New mucoadhesive polymeric film for ophthalmic administration of acetazolamide. Recent Pat Drug Deliv Formul. 2014;8(3):224–32.
  • Quinteros D, Vicario-de-la-Torre M, Andrés-Guerrero V, Palma S, Allemandi D, Herrero-Vanrell R. Hybrid formulations of liposomes and bioadhesive polymers improve the hypotensive effect of the melatonin analogue 5-MCA-NAT in rabbit eyes. PLoS One. 2014 Oct 20;9(10):e110344.
  • Michels S, Rosenfeld PJ, Puliafito CA, Marcus EN, Venkatraman AS. Systemic bevacizumab therapy for neovascular age-related macular degeneration twelve-week results of an uncontrolled open-label clinical study. Ophthalmology. 2005;112:1035–47.
  • Moshfeghi A, Rosenfeld P, Puliafito C, Michels S, Marcus E, Lenchus J, Venkatraman AS. Systemic bevacizumab (Avastin) therapy for neovascular age-related macular degeneration. Ophthalmology. 2006;113:2002–11.
  • Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I. A heparin-binding angiogenic protein- basic fibroblast growth factor is stored within basement membrane. Am J Pathol. 1988;130(2):393–400.
  • Cross MJ, Claesson-Welsh L. FGF and VEGF function in angiogenesis: signaling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci. 2001;22:201–07.
  • Chris O, Cui J, Matsubara J. FarzinForooghian. Pro-inflammatory and anti-angiogenic effects of bisphosphonates on human cultured retinal pigment epithelial cells. Br J Ophthalmol. 2013;97(8):1074–78.
  • Chen WL, Lin CT, Lin NT, Tu IH, Li JW, Chow LP, Liu KR, Hu FR. Subconjunctival injection of bevacizumab (Avastin) on corneal neovascularization in different rabbit models of corneal angiogenesis. Invest Ophthalmol Vis Sci. 2009;50:1659–65.
  • Kubota Y, Takubo K, Shimizu T, Ohno H, Kishi K, Shibuya M, Saya H, Suda T. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. Jem. 2009;206(5):1089–102.
  • Lee HS, Hos D, Blanco T, Bock F, Reyes NJ, Mathew R, Cursiefen C, Dana R, Saban DR. Involvement of corneal lymphangiogenesis in a mouse model of allergic eye disease. Invest Ophthalmol Vis Sci.. 2015;56(5):3140–48.
  • Bocci G. Inhibitory effect of suramin in rat models of angiogenesis in vitro and in vivo. Cancer Chemother Pharmacol. 1999;43:205–12.
  • Abbracchio MP, Burnstock G. Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther. 1994;64:445–75.
  • Kathir KM, Kumar TK, Yu C. Understanding the mechanism of the antimitogenic activity of suramin. Biochemistry. 2006 Jan 24;45(3):899–906.
  • Villalona-Calero MA, Wientjes MG, Otterson GA, Kanter S, Young D, Murgo AJ, Fisher B, DeHoff C, Chen D, Yeh TK, et al. Phase I study of low dose suramin as a chemosensitizer in patients with advanced non-small cell lung cancer. Clin Cancer Res. 2003 Aug 15;9(9):3303–11.
  • Waltenberger J, Mayr U, Frank H, Hombach V. Suramin is a potent inhibitor of vascular endothelial growth factor. A contribution to the molecular basis of its antiangiogenic action. J Mol Cell Cardiol. 1996;28(7):1523–29.
  • Ray F, Huang W, Slater M, Barden J. Purinergic receptor distribution in endothelial cells in blood vessels: a basis for selection of coronary artery grafts. Atherolsclerosis. 2002;162:55–61.
  • Sarman S, Mancini J, Van Der Ploeg I, Croxatto JO, Kvanta A, Gallo JE. Involvement of purinergic P2 receptors in experimental retinal neovascularization. Curr Eye Res. 2008;33(3):285–91.
  • Manzano RP, Peyman GA, Khan P, Carvounis PE, Kivilcim M, Ren M, Lake JC, Chévez–Barrios P. Inhibition of experimental corneal neovascularisation by Bevacizumab (Avastin). Br J Ophthalmol. 2007;91(6):804–07.
  • Koenig Y, Bock F, Horn F, Kruse F, Straub K, Cursiefen C. Short- and long-term safety profile and efficacy of topical bevacizumab (avastin) eye drops against corneal neovascularization. Graefe’s Arch Clin Exp Ophthalmol. 2009;247(10):1375–82.
  • Bock F, Onderka J, Dietrich T, Bachmann B, Kruse F, Paschke M, Zahn G, Cursiefen C. Bevacizumab as a potent inhibitor of inflammatory corneal angiogenesis and lymphangiogenesis. Invest Ophthalmol Vis Sci. 2007;48:2545–52.
  • DeLisser HM, Christofidou-Solomidou M, Strieter RM, Burdick MD, Robinson CS, Wexler RS, Kerr JS, Garlanda C, Merwin JR, Madri JA, Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am J Pathol. 1997;151(3):671–77.
  • Loukovaara S, Gucciardo E, Repo P, Vihinen H, Lohi J, Jokitalo E, Salven P, Lehti K2. Indications of lymphatic endothelial differentiation and endothelial progenitor cell activation in the pathology of proliferative diabetic retinopathy. ActaOphthalmol. 2015;93(6):512–23.
  • Chen D, Song SH, Wientjes MG, Yeh TK, Zhao L, Villalona-Calero M, Otterson GA, Jensen R, Grever M, Murgo AJ, Nontoxic suramin as a chemosensitizer in patients: dosing noogram development. Pharma Res. 2006;23(6):1265–74.
  • Villalona-Calero M, Otterson GA, Wientjes MG, Weber F, Bekaii-Saab T, Young D, Murgo AJ, Jensen R, Yeh TK, Wei Y, et al. Noncytotoxic suramin as a chemosensitizer in patients with advanced non-small-cell lung cancer: a phase II study. Ann Oncol. 2008;19(11):1903–09.
  • Quinteros DA, Lopez ES, Couto JL, Maletto BA, Allemandi DA, Palma SD, Gallo JE. Evaluation of the performance of an ophthalmic thermosensitive hydrogel containing combination of suramin and bevacizumab. Curr Pharm Des. 2016;22(43):6587–94.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.