1,222
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Effects of 17β-Estradiol on Activity, Gene and Protein Expression of Superoxide Dismutases in Primary Cultured Human Lens Epithelial Cells

ORCID Icon, , , , ORCID Icon &
Pages 639-646 | Received 26 May 2017, Accepted 29 Jan 2018, Published online: 12 Feb 2018

References

  • Mitchell P, Cumming RG, Attebo K, Panchapakesan J. Prevalence of cataract in Australia: The Blue Mountains Eye Study. Ophthalmology. 1997;104:581–88. doi: 10.1016/S0161-6420(97)30266-8.
  • Lundstrom M, Stenevi U, Thorburn W. Gender and cataract surgery in Sweden 1992-1997. A Retrospective Observational Study Based on the Swedish National Cataract Register. Acta Ophthalmol Scand. 1999;77: 204–08.
  • Klein BE, Klein R, Linton KL. Prevalence of age-related lens opacities in a population The Beaver Dam Eye Study. Ophthalmology. 1992;99: 546–52.
  • Klein BE, Klein R, Ritter LL. Is there evidence of an estrogen effect on age-related lens opacities? The Beaver Dam Eye Study. Arch Ophthalmol. 1994;112: 85–91.
  • Younan C, Mitchell P, Cumming RG, Panchapakesan J, Rochtchina E, Hales AM. Hormone replacement therapy, reproductive factors, and the incidence of cataract and cataract surgery: The Blue Mountains Eye Study. Am J Epidemiol. 2002;155: 997–1006.
  • Worzala K, Hiller R, Sperduto RD, Mutalik K, Murabito JM, Moskowitz M, D'Agostino RB, Wilson PW. Postmenopausal estrogen use, type of menopause, and lens opacities: The Framingham studies. Arch Intern Med. 2001;161:1448–54.
  • Ogueta SB, Schwartz SD, Yamashita CK, Farber DB. Estrogen receptor in the human eye: Influence of gender and age on gene expression. Invest Ophthalmol Vis Sci. 1999;40: 1906–11.
  • Wickham LA, Gao J, Toda I, Rocha EM, Ono M, Sullivan DA. Identification of androgen, estrogen and progesterone receptor mRNAs in the eye. Acta Ophthalmol Scand. 2000;78: 146–53.
  • Celojevic D, Petersen A, Karlsson JO, Behndig A, Zetterberg M. Effects of 17beta-estradiol on proliferation, cell viability and intracellular redox status in native human lens epithelial cells. Molecular Vision. 2011;17: 1987–96.
  • Gajjar D, Patel D, Alapure B, Praveen MR, Patel A, Johar K, Sr., Vasavada AR. Rapid action of oestradiol against hydrogen peroxide-induced oxidative stress in cataractous lens epithelium: An in vitro study. Eye (Lond). 2009;23:1456–63.
  • Wang X, Simpkins JW, Dykens JA, Cammarata PR. Oxidative damage to human lens epithelial cells in culture: Estrogen protection of mitochondrial potential, ATP, and cell viability. Invest Ophth Vis Sci. 2003;44: 2067–75.
  • Bigsby RM, Cardenas H, Caperell-Grant A, Grubbs CJ. Protective effects of estrogen in a rat model of age-related cataracts. P Natl Acad Sci USA. 1999;96: 9328–32.
  • Hales AM, Chamberlain CG, Murphy CR, McAvoy JW. Estrogen protects lenses against cataract induced by transforming growth factor-beta (TGFbeta). The Journal of Experimental Medicine. 1997;185: 273–80.
  • Kushner PJ, Agard DA, Greene GL, Scanlan TS, Shiau AK, Uht RM, Webb P. Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol. 2000;74:311–17.
  • Saville B, Wormke M, Wang F, Nguyen T, Enmark E, Kuiper G, et al. Ligand-, cell-, and estrogen receptor subtype (alpha/beta)-dependent activation at GC-rich (Sp1) promoter elements. J Biol Chem. 2000;275:5379–87.
  • Levin ER. Cell localization, physiology, and nongenomic actions of estrogen receptors. J Appl Physiol. 1985;2001(91): 1860–67.
  • Moor AN, Flynn JM, Gottipati S, Giblin FJ, Cammarata PR. 17beta-estradiol stimulates MAPK signaling pathway in human lens epithelial cell cultures preventing collapse of mitochondrial membrane potential during acute oxidative stress. Mitochondrion. 2005;5: 235–47.
  • Strehlow K, Rotter S, Wassmann S, Adam O, Grohe C, Laufs K, Böhm M, Nickenig G. Modulation of antioxidant enzyme expression and function by estrogen. Circ Res. 2003;93:170–77.
  • Borras C, Gambini J, Gomez-Cabrera MC, Sastre J, Pallardo FV, Mann GE, Viña J. 17beta-oestradiol up-regulates longevity-related, antioxidant enzyme expression via the ERK1 and ERK2[MAPK]/NFkappaB cascade. Aging Cell. 2005;4:113–18.
  • Razmara A, Duckles SP, Krause DN, Procaccio V. Estrogen suppresses brain mitochondrial oxidative stress in female and male rats. Brain Res. 2007;1176: 71–81.
  • Celojevic D, Petersen A, Karlsson JO, Behndig A, Zetterberg M. Effects of 17beta-estradiol on proliferation, cell viability and intracellular redox status in native human lens epithelial cells. Mol Vis. 2011;17: 1987–96.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25: 402–08.
  • Spector A. Oxidative stress-induced cataract: Mechanism of action. Faseb J. 1995;9: 1173–82.
  • Brennan LA, McGreal RS, Kantorow M. Oxidative stress defense and repair systems of the ocular lens. Front Bioscience. 2012;4: 141–55.
  • McCord JM, Fridovich I. Superoxide dismutase. An Enzymic Function for Erythrocuprein (Hemocuprein). The Journal of Biological Chemistry. 1969;244: 6049–55.
  • Weisiger RA, Fridovich I. Mitochondrial superoxide dismutase. Site Synthesis Intramitochondrial Localization J Biol Chem. 1973;248: 4793–96.
  • Marklund SL. Human copper-containing superoxide dismutase of high molecular weight. P Natl Acad Sci USA. 1982;79: 7634–38.
  • Behndig A, Svensson B, Marklund SL, Karlsson K. Superoxide dismutase isoenzymes in the human eye. Invest Ophthalmol Vis Sci. 1998;39: 471–75.
  • Crapo JD, Oury T, Rabouille C, Slot JW, Chang LY. Copper,zinc superoxide dismutase is primarily a cytosolic protein in human cells. Proc Natl Acad Sci U S A. 1992;89: 10405–09.
  • Gottipati S, Cammarata PR. Mitochondrial superoxide dismutase activation with 17 beta-estradiol-treated human lens epithelial cells. Molecular Vision. 2008;14: 898–905.
  • Pedram A, Razandi M, Wallace DC, Levin ER. Functional estrogen receptors in the mitochondria of breast cancer cells. Mol Biol Cell. 2006;17: 2125–37.
  • Sundelin K, Petersen A, Soltanpour Y, Zetterberg M. In vitro growth of lens epithelial cells from cataract patients - association with possible risk factors for posterior capsule opacification. The Open Ophthalmology Journal. 2014;8: 19–23.
  • Flynn JM, Dimitrijevich SD, Younes M, Skliris G, Murphy LC, Cammarata PR. Role of wild-type estrogen receptor-beta in mitochondrial cytoprotection of cultured normal male and female human lens epithelial cells. American Journal of Physiology Endocrinology and Metabolism. 2008;295: E637–647.
  • Cammarata PR, Flynn J, Gottipati S, Chu S, Dimitrijevich S, Younes M, Skliris G, Murphy LC. Differential expression and comparative subcellular localization of estrogen receptor beta isoforms in virally transformed and normal cultured human lens epithelial cells. Experimental Eye Research. 2005;81:165–75.
  • Cammarata PR, Chu S, Moor A, Wang Z, Yang SH, Simpkins JW. Subcellular distribution of native estrogen receptor alpha and beta subtypes in cultured human lens epithelial cells. Experimental Eye Research. 2004;78: 861–71.
  • Cheng G, Li Y, Omoto Y, Wang Y, Berg T, Nord M, Vihko P, Warner M, Piao YS, Gustafsson JA. Differential regulation of estrogen receptor (ER)alpha and ERbeta in primate mammary gland. J Clin Endocrinol Metab. 2005;90:435–44.
  • Paech K, Webb P, Kuiper GG, Nilsson S, Gustafsson J, Kushner PJ, Scanlan TS. Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science. 1997;277:1508–10.
  • Lu S, Sun C, Miao C, Zhao Z. ERbeta compensates for the absence of ERalpha function to promote osteoblast viability by inhibition of SOST signaling. Exp Ther Med. 2017;14: 3387–92.
  • Maruyama S, Fujimoto N, Asano K, Ito A. Suppression by estrogen receptor beta of AP-1 mediated transactivation through estrogen receptor alpha. J Steroid Biochem Mol Biol. 2001;78: 177–84.