407
Views
17
CrossRef citations to date
0
Altmetric
Vitreous, Retina and Choroid

In Vivo Imaging of the Retina, Choroid, and Optic Nerve Head in Guinea Pigs

, &
Pages 1006-1018 | Received 17 Jan 2018, Accepted 06 Apr 2018, Published online: 23 Apr 2018

References

  • Fontaine M, Gaucher D, Sauer A, Speeg-Schatz C. Choroidal thickness and ametropia in children: a longitudinal study. Eur J Ophthalmol. 2017;27(6):730–734
  • El-Shazly AA, Farweez YA, ElSebaay ME, El-Zawahry WMA. Correlation between choroidal thickness and degree of myopia assessed with enhanced depth imaging optical coherence tomography. Eur J Ophthalmol. 2017;27(5):577–84. doi:10.5301/ejo.5000936.
  • AttaAllah HR, Omar IAN, Abdelhalim AS. Evaluation of optic nerve head parameters and retinal nerve fiber layer thickness in axial myopia using SD OCT. Ophthalmol Ther. 2017;6(2):335–41. doi:10.1007/s40123-017-0095-5.
  • Suzuki Y, Iwase A, Araie M, Yamamoto T, Abe H, Shirato S, Kuwayama Y, Mishima HK, Shimizu H, Tomita G, et al. Risk factors for open-angle glaucoma in a Japanese population: the Tajimi Study. Ophthalmology. 2006;113(9):1613–17. Epub 2006/ 07/11. doi:10.1016/j.ophtha.2006.03.059.
  • Mitchell P, Hourihan F, Sandbach J, Wang JJ. The relationship between glaucoma and myopia: the Blue Mountains Eye Study. Ophthalmology. 1999;106(10):2010–15. Epub 1999/ 10/16.
  • Xu L, Wang Y, Wang S, Jonas JB. High myopia and glaucoma susceptibility the Beijing Eye Study. Ophthalmology. 2007;114(2):216–20. Epub 2006/ 11/25. doi:10.1016/j.ophtha.2006.06.050.
  • Cull GA, Reynaud J, Wang L, Cioffi GA, Burgoyne CF, Fortune B. Relationship between orbital optic nerve axon counts and retinal nerve fiber layer thickness measured by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(12):7766–73. doi:10.1167/iovs.12-10752.
  • Ivers KM, Sredar N, Patel NB, Rajagopalan L, Queener HM, Twa MD, Harwerth RS, Porter J. In vivo changes in lamina cribrosa microarchitecture and optic nerve head structure in early experimental glaucoma. PloS One. 2015;10(7):e0134223. doi:10.1371/journal.pone.0134223.
  • Fortune B, Reynaud J, Hardin C, Wang L, Sigal IA, Burgoyne CF. Experimental glaucoma causes optic nerve head neural rim tissue compression: a potentially important mechanism of axon injury. Invest Ophthalmol Vis Sci. 2016;57(10):4403–11. doi:10.1167/iovs.16-20000.
  • Howlett MH, McFadden SA. Spectacle lens compensation in the pigmented guinea pig. Vision Res. 2009;49(2):219–27. Epub 2008/ 11/11. doi:10.1016/j.visres.2008.10.008.
  • Liu Q, Wu J, Wang X, Zeng J. Changes in muscarinic acetylcholine receptor expression in form deprivation myopia in guinea pigs. Mol Vis. 2007;13:1234–44. Epub 2007/ 08/08.
  • Garcia MB, Jha AK, Healy KE, Wildsoet CF, Bioengineering A. Approach to Myopia Control Tested in a Guinea Pig Model. Invest Ophthalmol Vis Sci. 2017;58(3):1875–86. doi:10.1167/iovs.16-20694.
  • Demb JB, Haarsma L, Freed MA, Sterling P. Functional circuitry of the retinal ganglion cell’s nonlinear receptive field. J Neurosci. 1999;19(22):9756–67. doi:10.1523/JNEUROSCI.19-22-09756.1999.
  • Zaghloul KA, Boahen K, Demb JB. Different circuits for ON and OFF retinal ganglion cells cause different contrast sensitivities. J Neurosci. 2003;23(7):2645–54.
  • Racine J, Joly S, Rufiange M, Rosolen S, Casanova C, Lachapelle P. The photopic ERG of the albino guinea pig (Cavia porcellus): a model of the human photopic ERG. Doc Ophthalmol. 2005;110(1):67–77. doi:10.1007/s10633-005-7345-x.
  • Racine J, Behn D, Lachapelle P. Structural and functional maturation of the retina of the albino Hartley guinea pig. Doc Ophthalmol. 2008;117(1):13–26. doi:10.1007/s10633-007-9098-1.
  • Ostrin LA. Optic nerve head and intraocular pressure in the guinea pig eye. Exp Eye Res. 2016;7–16. doi:10.1016/j.exer.2015.12.007.
  • Rodriguez-Ramos Fernandez J, Dubielzig RR. Ocular comparative anatomy of the family Rodentia. Vet Ophthalmol. 2013;16(Suppl 1):94–99. doi:10.1111/vop.12070.
  • Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81. Epub 1991/ 11/22. doi:10.1126/science.1957169.
  • Bussel II, Wollstein G, Schuman JS. OCT for glaucoma diagnosis, screening and detection of glaucoma progression. Br J Ophthalmol. 2014;98(Suppl 2):ii15–9. Epub 2013/ 12/21. doi:10.1136/bjophthalmol-2013-304326.
  • Schuman JS, Pedut-Kloizman T, Hertzmark E, Hee MR, Wilkins JR, Coker JG, Puliafito CA, Fujimoto JG, Swanson EA. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology. 1996;103(11):1889–98. Epub 1996/ 11/01. doi:10.1016/S0161-6420(96)30410-7.
  • Sander B, Larsen M, Thrane L, Hougaard JL, Jorgensen TM. Enhanced optical coherence tomography imaging by multiple scan averaging. Br J Ophthalmol. 2005;89(2):207–12. Epub 2005/ 01/25. doi:10.1136/bjo.2004.045989.
  • Sakamoto A, Hangai M, Yoshimura N. Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases. Ophthalmology. 2008;115(6):1071–8.e7. Epub 2007/ 12/07. doi:10.1016/j.ophtha.2007.09.001.
  • Kotowski J, Wollstein G, Folio LS, Ishikawa H, Schuman JS. Clinical use of OCT in assessing glaucoma progression. Ophthalmic Surg Lasers Imaging. 2011;(42 Suppl):S6–s14. Epub 2011/ 07/28. doi:10.3928/15428877-20110627-01.
  • Lee SH, Kim SH, Kim TW, Park KH, Kim DM. Reproducibility of retinal nerve fiber thickness measurements using the test-retest function of spectral OCT/SLO in normal and glaucomatous eyes. J Glaucoma. 2010;19(9):637–42. Epub 2010/ 02/23. doi:10.1097/IJG.0b013e3181ca7cbe.
  • Chauhan BC, O’Leary N, Almobarak FA, Reis AS, Yang H, Sharpe GP, Hutchison DM, Nicolela MT, Burgoyne CF. Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology. 2013;120(3):535–43. Epub 2012/ 12/26. doi:10.1016/j.ophtha.2012.09.055.
  • Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–67. doi:10.1136/bjo.2005.081224.
  • Gelatt KN, Gum GG, Gwin RM, Bromberg NM, Merideth RE, Samuelson DA. Primary open angle glaucoma: inherited primary open angle glaucoma in the beagle. Am J Pathol. 1981;102(2):292–95.
  • Sappington RM, Carlson BJ, Crish SD, Calkins DJ. The microbead occlusion model: a paradigm for induced ocular hypertension in rats and mice. Invest Ophthalmol Vis Sci. 2010;51(1):207–16. doi:10.1167/iovs.09-3947.
  • Bergen MA, Park HN, Chakraborty R, Landis EG, Sidhu C, He L, Iuvone PM, Pardue MT. Altered refractive development in mice with reduced levels of retinal dopamine. Invest Ophthalmol Vis Sci. 2016;57(10):4412–19. doi:10.1167/iovs.15-17784.
  • Veth KN, Willer JR, Collery RF, Gray MP, Willer GB, Wagner DS, Mullins MC, Udvadia AJ, Smith RS, John SW, et al. Mutations in zebrafish lrp2 result in adult-onset ocular pathogenesis that models myopia and other risk factors for glaucoma. PLoS Genet. 2011;7(2):e1001310. doi:10.1371/journal.pgen.1001310.
  • Harwerth RS, Crawford ML, Frishman LJ, Viswanathan S, Smith EL 3rd, Carter-Dawson L. Visual field defects and neural losses from experimental glaucoma. Prog Retin Eye Res. 2002;21(1):91–125. Epub 2002/ 03/22. doi:10.1016/S1350-9462(01)00022-2.
  • Bouhenni RA, Dunmire J, Sewell A, Edward DP. Animal models of glaucoma. Journal of Biomedicine and Biotechnology. 2012;2012. doi: 10.1155/2012/692609.
  • Aires ID, Ambrosio AF, Santiago AR. Modeling human glaucoma: lessons from the in vitro Models. Ophthalmic Res. 2017;57(2):77–86. Epub 2016/ 09/13. doi:10.1159/000448480.
  • Burgoyne CF. The non-human primate experimental glaucoma model. Exp Eye Res. 2015;141:57–73. Epub 2015/ 06/14. doi:10.1016/j.exer.2015.06.005.
  • Dai C, Khaw PT, Yin ZQ, Li D, Raisman G, Li Y. Structural basis of glaucoma: the fortified astrocytes of the optic nerve head are the target of raised intraocular pressure. Glia. 2012;60(1):13–28. Epub 2011/ 09/29. doi:10.1002/glia.v60.1.
  • Sun D, Lye-Barthel M, Masland RH, Jakobs TC. The morphology and spatial arrangement of astrocytes in the optic nerve head of the mouse. J Comp Neurol. 2009;516(1):1–19. doi:10.1002/cne.v516:1.
  • Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR. Morphologic changes in the lamina cribrosa correlated with neural loss in open angle glaucoma. Am J Ophthalmol. 1983;673–91. doi:10.1016/0002-9394(83)90389-6.
  • Roberts MD, Grau V, Grimm J, Reynaud J, Bellezza AJ, Burgoyne CF, Downs JC. Remodeling of the connective tissue microarchitecture of the lamina cribrosa in early experimental glaucoma. Investig Ophthalmol Vis Sci. 2009;681–90. doi:10.1167/iovs.08-1792.
  • Jacobs GH, Deegan JF 2nd. Spectral sensitivity, photopigments, and color vision in the guinea pig (Cavia porcellus). Behav Neurosci. 1994;108(5):993–1004. doi:10.1037/0735-7044.108.5.993.
  • Lei B. The ERG of guinea pig (Cavis porcellus): comparison with I-type monkey and E-type rat. Doc Ophthalmol. 2003;106(3):243–49. Epub 2003/ 05/10. doi:10.1023/A:1022940517793.
  • Zhou X, Qu J, Xie R, Wang R, Jiang L, Zhao H, Wen J, Lu F. Normal development of refractive state and ocular dimensions in guinea pigs. Vision Res. 2006;46(18):2815–23. Epub 05/26. doi:10.1016/j.visres.2006.01.027.
  • Do-Nascimento JL, Do-Nascimento RS, Damasceno BA, Silveira LC. The neurons of the retinal ganglion cell layer of the guinea pig: quantitative analysis of their distribution and size. Brazilian Journal of Medical and Biological Research = Revista Brasileira De Pesquisas Medicas E biologicas/Sociedade Brasileira De Biofisica [Et Al]. 1991;24(2):199–214.
  • Choudhury BP. Retinotopic organization of the guinea pig’s visual cortex. Brain Res. 1978;144(1):19–29. doi:10.1016/0006-8993(78)90432-8.
  • Gabriele ML, Ishikawa H, Schuman JS, Bilonick RA, Kim J, Kagemann L, Wollstein G. Reproducibility of spectral-domain optical coherence tomography total retinal thickness measurements in mice. Invest Ophthalmol Vis Sci. 2010;51(12):6519–23. doi:10.1167/iovs.10-5662.
  • Lozano DC, Twa MD. Quantitative evaluation of factors influencing the repeatability of SD-OCT thickness measurements in the rat. Invest Ophthalmol Vis Sci. 2012;53(13):8378–85. doi:10.1167/iovs.12-9940.
  • Yang JH, Yu SY, Kim TG, Seo KH, Kwak HW. Repeatability and reproducibility of spectral-domain optical coherence tomography measurements of retinal thickness in rats. Curr Eye Res. 2016;41(10):1346–52. doi:10.3109/02713683.2015.1114651.
  • Li T, Zhou X, Luo X, Jiang B. Optical coherence tomography and histologic measurements of retinal and choroidal thicknesses in guinea pig eyes. Int J Clin Exp Med. 2016;9(4):7080–87. Epub April 15, 2016.
  • Gawne TJ, Ward AH, Norton TT. Long-wavelength (red) light produces hyperopia in juvenile and adolescent tree shrews. Vision Res. 2017;140:55–65. doi:10.1016/j.visres.2017.07.011.
  • Gawne TJ, Siegwart JT Jr., Ward AH, Norton TT. The wavelength composition and temporal modulation of ambient lighting strongly affect refractive development in young tree shrews. Exp Eye Res. 2016;155:75–84. Epub 12/17. doi:10.1016/j.exer.2016.12.004.
  • Howlett MH, McFadden SA. Emmetropization and schematic eye models in developing pigmented guinea pigs. Vision Res. 2007;47(9):1178–90. Epub 2007/ 03/16. doi:10.1016/j.visres.2006.12.019.
  • Bennett AG. A method of determining the equivalent powers of the eye and its crystalline lens without resort to phakometry. Ophthalmic Physiol Opt. 1988;8(1):53–59. Epub 01/01. doi:10.1016/0275-5408(88)90089-0.
  • Patel NB, Luo X, Wheat JL, Harwerth RS. Retinal nerve fiber layer assessment: area versus thickness measurements from elliptical scans centered on the optic nerve. Invest Ophthalmol Vis Sci. 2011;52(5):2477–89. Epub 01/12. doi:10.1167/iovs.10-6105.
  • Holden AL, Hayes BP, Fitzke FW. Retinal magnification factor at the ora terminals: a structural study of human and animal eyes. Vision Res. 1987;27(8):1229–35. Epub 01/01. doi:10.1016/0042-6989(87)90198-2.
  • Lapuerta P, Schein SJ. A four-surface schematic eye of macaque monkey obtained by an optical method. Vision Res. 1995;35(16):2245–54. Epub 08/01. doi:10.1016/0042-6989(94)00320-L.
  • Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420–28. doi:10.1037/0033-2909.86.2.420.
  • Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10. doi:10.1016/S0140-6736(86)90837-8.
  • Cui D, Trier K, Zeng J, Wu K, Yu M, Hu J, Chen X, Ge J. Effects of 7-methylxanthine on the sclera in form deprivation myopia in guinea pigs. Acta Ophthalmol. 2011;89(4):328–34. doi:10.1111/j.1755-3768.2009.01688.x.
  • Penha AM, Burkhardt E, Schaeffel F, Feldkaemper MP. Ultrasonography and optical low-coherence interferometry compared in the chicken eye. Optom Vis Sci. 2012;89(6):916–21. doi:10.1097/OPX.0b013e318257a255.
  • Chaudhuri A, Hallett PE, Parker JA. Aspheric curvatures, refractive indices and chromatic aberration for the rat eye. Vision Res. 1983;23(12):1351–63. Epub 01/01. doi:10.1016/0042-6989(83)90146-3.
  • Schuman JS, Pedut-Kloizman T, Pakter H, Wang N, Guedes V, Huang L, Pieroth L, Scott W, Hee MR, Fujimoto JG, et al. Optical coherence tomography and histologic measurements of nerve fiber layer thickness in normal and glaucomatous monkey eyes. Invest Ophthalmol Vis Sci. 2007;48(8):3645–54. Epub 07/27. doi:10.1167/iovs.06-0876.
  • Huang L, Schuman J, Wang N. [Comparison of nerve fiber layer thickness between optical coherence tomography and histomorphometry in glaucomatous monkey eyes]. Zhonghua Yan Ke Za Zhi. 2002;37(3):188–92. Epub 02/28.
  • Abbott CJ, McBrien NA, Grunert U, Pianta MJ. Relationship of the optical coherence tomography signal to underlying retinal histology in the tree shrew (Tupaia belangeri). Invest Ophthalmol Vis Sci. 2009;50(1):414–23. Epub 2008/ 08/19. doi:10.1167/iovs.07-1197.
  • Bowd C, Weinreb RN, Zangwill LM. Evaluating the optic disc and retinal nerve fiber layer in glaucoma. I: clinical examination and photographic methods. Semin Ophthalmol. 2000;15(4):194–205. Epub 2007/ 06/26. doi:10.3109/08820530009037871.
  • Firat PG1 DS, Demirel EE, Colak C. Comparison of ganglion cell and retinal nerve fiber layer thickness in primary open-angle glaucoma and normal tension glaucoma with spectral-domain OCT. Graefes Arch Clin Exp Ophthalmol. 2013;831–38. doi:10.1007/s00417-012-2114-5.
  • Fortune BCG, Reynaud J, Wang L, Burgoyne CF. Relating retinal ganglion cell function and retinal nerve fiber layer (RNFL) retardance to progressive loss of RNFL thickness and optic nerve axons in experimental glaucoma. Invest Ophthalmol Vis Sci. 2015;3936–44. doi:10.1167/iovs.15-16548.
  • Nakano N1 IH, Hangai M, Muraoka Y, Toda Y, Kakizuka A, Yoshimura N. Longitudinal and simultaneous imaging of retinal ganglion cells and inner retinal layers in a mouse model of glaucoma induced by N-methyl-D-aspartate. Invest Ophthalmol Vis Sci. 2011;8754–62. doi:10.1167/iovs.10-6654.
  • Huang XR1 ZY, Kong W, Knighton RW. Reflectance decreases before thickness changes in the retinal nerve fiber layer in glaucomatous retinas. Invest Ophthalmol Vis Sci. 2011;6737–42. doi:10.1167/iovs.11-7665.
  • Buttery RG, Hinrichsen CF, Weller WL, Haight JR. How thick should a retina be? A comparative study of mammalian species with and without intraretinal vasculature. Vision Res. 1991;31(2):169–87. doi:10.1016/0042-6989(91)90110-Q.
  • Kocaoglu OP, Uhlhorn SR, Hernandez E, Juarez RA, Will R, Parel JM, Manns F. Simultaneous fundus imaging and optical coherence tomography of the mouse retina. Invest Ophthalmol Vis Sci. 2007;48(3):1283–89. Epub 02/28. doi:10.1167/iovs.06-0732.
  • Toyoda F, Tanaka Y, Shimmura M, Kinoshita N, Takano H, Kakehashi A. Diabetic retinal and choroidal edema in SDT Rats. J Diabetes Res. 2016;2016:2345141. Epub 01/20. doi:10.1155/2016/2345141.
  • Straznicky C, Chehade M. The formation of the area centralis of the retinal ganglion cell layer in the chick. Development. 1987;100(3):411–20.
  • Patel NB, Hung LF, Harwerth RS. Postnatal maturation of the fovea in Macaca mulatta using optical coherence tomography. Exp Eye Res. 2017;164:8–21. doi:10.1016/j.exer.2017.07.018.
  • Cobcroft M, Vaccaro T, Mitrofanis J. Distinct patterns of distribution among NADPH-diaphorase neurones of the guinea pig retina. Neurosci Lett. 1989;103(1):1–7. doi:10.1016/0304-3940(89)90475-8.
  • Lu F, Zhou X, Jiang L, Fu Y, Lai X, Xie R, Qu J. Axial myopia induced by hyperopic defocus in guinea pigs: a detailed assessment on susceptibility and recovery. Exp Eye Res. 2009;89(1):101–08. Epub 2009/ 03/10. doi:10.1016/j.exer.2009.02.019.
  • Ostrin LA, Garcia MB, Choh V, Wildsoet CF. Pharmacologically stimulated pupil and accommodative changes in Guinea pigs. Invest Ophthalmol Vis Sci. 2014;55(8):5456–65. doi:10.1167/iovs.14-14096.
  • Jiang L, Schaeffel F, Zhou X, Zhang S, Jin X, Pan M, Ye L, Wu X, Huang Q, Lu F, et al. Spontaneous axial myopia and emmetropization in a strain of wild-type guinea pig (Cavia porcellus). Invest Ophthalmol Vis Sci. 2009;50(3):1013–19. Epub 2008/ 11/26. doi:10.1167/iovs.08-2463.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.