300
Views
23
CrossRef citations to date
0
Altmetric
Visual Function

Altered Functional Connectivity of the Primary Visual Cortex in Adult Comitant Strabismus: A Resting-State Functional MRI Study

, , , , , , , & show all
Pages 316-323 | Received 16 Jun 2018, Accepted 23 Oct 2018, Published online: 03 Dec 2018

References

  • Chew E, Remaley NA, Tamboli A, Zhao J, Podgor MJ, Klebanoff M. Risk factors for esotropia and exotropia. Arch Ophthalmol. 1994;112(10):1349–55. PMID: 7945039.
  • Govindan M, Mohney BG, Diehl NN, Burke JP. Incidence and types of childhood exotropia: a population-based study. Ophthalmology. 2005;112:104–08. doi:10.1016/j.ophtha.2004.07.033.
  • Robaei D, Rose KA, Kifley A, Cosstick M, Ip JM, Mitchell P. Factors associated with childhood strabismus: findings from a population-based. Ophthalmology. 2006;113:1146–53. doi:10.1016/j.ophtha.2006.02.019.
  • Hubel DH, Wiesel TN. Binocular interaction in striate cortex of kittens reared with artificial squint. J Neurophysiol. 1965;28:1041–59. doi:10.1152/jn.1965.28.6.1041.
  • Crawford MLJ, von Noorden GK. The effects of short-term experimental strabismus on the visual system in Macaca Mulatta. Invest Ophthalmol Vis Sci. 1979;18:496–505.
  • Schmidt K-F, Löwel S. The layout of functional maps in area 18 of strabismic cats. Neuroscience. 2006;141:1525–31. doi:10.1016/j.neuroscience.2006.04.056.
  • Schmidt K-F, Löwel S. Optical imaging in cat area 18: strabismus does not enhance the segregation of ocular dominance domains. Neuroimage. 2006;29:439–45. doi:10.1016/j.neuroimage.2005.07.031.
  • Sengpiel F, Jirmann KU, Vorobyov V, Eysel UT. Strabismic suppression is mediated by inhibitory interactions in the primary visual cortex. Cereb Cortex. 2006;16:1750–58. doi:10.1093/cercor/bhj110.
  • Adams DL, Economides JR, Sincich LC, Horton JC. Cortical metabolic activity matches the pattern of visual suppression in strabismus. J Neurosci. 2013;33:3752–59. doi:10.1523/JNEUROSCI.3228-12.2013.
  • Schmidt KF, Löwel S. Strabismus modifies intrinsic and inter-areal connections in cat area 18. Neuroscience. 2008;152:128–37. doi:10.1016/j.neuroscience.2007.08.038.
  • Schmidt KE, Kim DS, Singer W, Bonhoeffer T, Löwel S. Functional specificity of long-range intrinsic and interhemispheric connections in the visual cortex of strabismic cats. J Neurosci. 1997;17:5480–92.
  • Trachtenberg JT, Stryker MP. Rapid anatomical plasticity of horizontal connections in the developing visual cortex. J Neurosci. 2001;21:3476–82.
  • Zhang B, Bi H, Sakai E, Maruko I, Zheng J, Smith EL, 3rd, Chino YM. Rapid plasticity of binocular connections in developing monkey visual cortex (V1). Proc Natl Acad Sci U S A. 2005;102:9026–31. doi:10.1073/pnas.0500280102.
  • Chan ST, Tang KW, Lam KC, Chan LK, Mendola JD, Kwong KK. Neuroanatomy of adult strabismus: a voxel-based morphometric analysis of magnetic resonance structural scans. Neuroimage. 2004;22:986–94. doi:10.1016/j.neuroimage.2004.02.021.
  • Yan X, Lin X, Wang Q, Zhang Y, Chen Y, Song S, Jiang T. Dorsal visual pathway changes in patients with comitant exotropia. PLoS One. 2010;5:e10931.
  • Rogers BP, Morgan VL, Newton AT, Gore JC. Assessing functional connectivity in the human brain by fMRI. Magn Reson Imaging. 2007;25:1347–57. doi:10.1016/j.mri.2007.03.007.
  • Greicius MD. Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol. 2008;21:424–30. doi:10.1097/WCO.0b013e328306f2c5.
  • Sheline YI, Raichle ME. Resting state functional connectivity in preclinical Alzheimer’s disease. Biol Psychiatry. 2013;74:340–47. doi:10.1016/j.biopsych.2012.11.028.
  • Yu C, Liu Y, Li J, Zhou Y, Wang K, Tian L, Qin W, Jiang T, Li K. Altered functional connectivity of primary visual cortex in early blindness. Hum Brain Mapp. 2008;29(5):533–43. doi:10.1002/hbm.20420.
  • Smith SM, Vidaurre D, Beckmann CF, Glasser MF, Jenkinson M, Miller KL, Nichols TE, Robinson EC, Salimi-Khorshidi G, Woolrich MW, et al. Functional connectomics from resting-state fMRI. Trends Cogn Sci. 2013;17:666–82. doi:10.1016/j.tics.2013.09.016.
  • Niechwiej-Szwedo E, Chandrakumar M, Goltz HC, Wong AM. Effects of strabismic amblyopia and strabismus without amblyopia on visuomotor behavior. I: saccadic eye movements. Invest Ophthalmol Vis Sci. 2012;53:7458–68. doi:10.1167/iovs.12-10550.
  • Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT. Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp. 2000;10:120–31.
  • Maldjian JA1, Laurienti PJ, Kraft RA, Burdette JH. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage. 2003;19:1233–39.
  • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89. doi:10.1006/nimg.2001.0978.
  • Schon K, Atri A, Hasselmo ME, Tricarico MD, LoPresti ML, Stern CE. Scopolamine reduces persistent activity related to long-term encoding in the parahippocampal gyrus during delayed matching in humans. J Neurosci. 2005;25:9112–23. doi:10.1523/JNEUROSCI.1982-05.2005.
  • Wang K, Liang M, Wang L, Tian L, Zhang X, Li K, Jiang T. Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Hum Brain Mapp. 2007;28:967–78. doi:10.1002/hbm.20324.
  • Yu L, Yin X, Dai C, Liang M, Wei L, Li C, Zhang J, Xie B, Wang J. Morphologic changes in the anterior and posterior subregions of V1 and V2 and the V5/MT+ in patients with primary open-angle glaucoma. Brain Res. 2014;1588:135–43. doi:10.1016/j.brainres.2014.09.005.
  • Park BY, Tark KJ, Shim WM, Park H. Functional connectivity based parcellation of early visual cortices. Hum Brain Mapp. 2018;39:1380–90. doi:10.1002/hbm.23926.
  • Li Q, Song M, Fan L, Liu Y, Jiang T. Parcellation of the primary cerebral cortices based on local connectivity profiles. Front Neuroanat. 2015;9:50. doi:10.3389/fnana.2015.00050.
  • Wang L, Mruczek RE, Arcaro MJ, Kastner S. Probabilistic maps of visual topography in human cortex. Cereb Cortex. 2015;25:3911–31. doi:10.1093/cercor/bhu277.
  • Liu Y, Yu C, Liang M, Li J, Tian L, Zhou Y, Qin W, Li K, Jiang T. Whole brain functional connectivity in the early blind. Brain. 2007;130:2085–96. doi:10.1093/brain/awm121.
  • Tian L, Jiang T, Liang M, Zang Y, He Y, Sui M, Wang Y. Enhanced resting state brain activities in ADHD patients: an fMRI study. Brain Dev. 2008;30:342–48. doi:10.1016/j.braindev.2007.10.005.
  • Heekeren HR, Marrett S, Bandettini PA, Ungerleider LG. A general mechanism for perceptual decision-making in the human brain. Nature. 2004;431:859–62. doi:10.1038/nature02966.
  • Tehovnik EJ, Sommer MA, Chou IH, Slocum WM, Schiller PH. Eye fields in the frontal lobes of primates. Brain Res Rev. 2000;32:413–48.
  • Pierrot-Deseilligny C, Milea D, Müri RM. Eye movement control by the cerebral cortex. Curr Opin Neurol. 2004;17:17–25.
  • Schmahmann JD, Pandya DN. The complex history of the fronto-occipital fasciculus. J Hist Neurosci. 2007;16:362–77. doi:10.1080/09647040600620468.
  • Schall JD1, Morel A, King DJ, Bullier J. Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J Neurosci. 1995;15:4464–87.
  • Barone P, Batardiere A, Knoblauch K, Kennedy H. Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule. J Neurosci. 2000;20:3263–81.
  • Heinzle J, Hepp K, Martin KA. A microcircuit model of the frontal eye fields. J Neurosci. 2007;27:9341–53. doi:10.1523/JNEUROSCI.0974-07.2007.
  • Longo MR, Trippier S, Vagnoni E, Lourenco S. Right hemisphere control of visuospatial attention in near space. Neuropsychologia. 2015;70:350–57. doi:10.1016/j.neuropsychologia.2014.10.035.
  • Baker FH, Grigg P, von Noorden GK. Effects of visual deprivation and strabismus on the response of neurones in the visual cortex of the monkey, including studies on the striate and parastriate cortex in the normal animal. Brain Res. 1974;66:185–208. doi:10.1016/0006-8993(74)90140-1.
  • Babu RJ, Clavagnier SR, Bobier W, Thompson B, Hess RF. The regional extent of suppression: strabismics versus nonstrabismics. Invest Ophthalmol Vis Sci. 2013;54:6585–93. doi:10.1167/iovs.12-11314.
  • Xu P, Huang R, Wang J, Van Dam NT, Xie T, Dong Z, Chen C, Gu R, Zang YF, He Y, et al. Different topological organization of human brain functional networks with eyes open versus eyes closed. Neuroimage. 2014;90:246–55. doi:10.1016/j.neuroimage.2013.12.060.
  • Marx E, Deutschländer A, Stephan T, Dieterich M, Wiesmann M, Brandt T. Eyes open and eyes closed as rest conditions: impact on brain activation patterns. Neuroimage. 2004;21:1818–24. doi:10.1016/j.neuroimage.2003.12.026.
  • Patriat R, Molloy EK, Meier TB, Kirk GR, Nair VA, Meyerand ME, Prabhakaran V, Birn RM. The effect of resting condition on resting-state fMRI reliability and consistency: a comparison between resting with eyes open, closed, and fixated. Neuroimage. 2013;78:463–73. doi:10.1016/j.neuroimage.2013.04.013.
  • Wang T, Li Q, Guo M, Peng Y, Li Q, Qin W, Yu C. Abnormal functional connectivity density in children with anisometropic amblyopia at resting-state. Brain Res. 2014;1563:41–51. doi:10.1016/j.brainres.2014.03.015.
  • Ding K, Liu Y, Yan X, Lin X, Jiang T. Altered functional connectivity of primary visual cortex in anisometropic amblyopia subjects. Neural Plast. 2013;2013:612086. doi:10.1155/2013/612086.
  • Lin X, Ding K, Liu Y, Yan X, Song S, Jiang T. Altered spontaneous activity in anisometropic amblyopia subjects: revealed by resting-state FMRI. PLoS One. 2012;7:e43373. doi:10.1371/journal.pone.0043373.
  • Joly O, Frankó E. Neuroimaging of amblyopia and binocular vision: a review. Front Integr Neurosci. 2014;8:62. doi:10.3389/fnint.2014.00062.
  • Lang J. Critical period for restoration of normal stereoacuity in acute-onset comitant esotropia. Am J Ophthalmol. 1995;119:667–68.
  • Yang X, Zhang J, Lang L, Gong Q, Liu L. Assessment of cortical dysfunction in infantile esotropia using fMRI. Eur J Ophthalmol. 2014;24:409–16. doi:10.5301/ejo.5000368.
  • Huang X, Li S-H, Zhou F-Q, Zhang Y, Zhong Y-L, Cai F-Q, Shao Y, Zeng X-J. Altered intrinsic regional brain spontaneous activity in patients with comitant strabismus: a resting-state functional MRI study. Neuropsychiatr Dis Treat. 2016;12:1303–8. doi:10.2147/NDT.S105478.
  • Tan G, Huang X, Zhang Y, Wu A-H, Zhong Y-L, Wu K, Zhou F-Q, Shao Y. A functional MRI study of altered spontaneous brain activity pattern in patients with congenital comitant strabismus using amplitude of low-frequency fluctuation. Neuropsychiatr Dis Treat. 2016;12:1243–50. doi:10.2147/NDT.S104756.
  • Tan G, Dan Z-R, Zhang Y, Huang X, Zhong Y-L, Ye L-H, Rong R, Ye L, Zhou Q, Shao Y. Altered brain network centrality in patients with adult comitant exotropia strabismus: a resting-state fMRI study. J Int Med Res. 2018;46:392–402. doi:10.1177/0300060517715340.
  • Lowe MJ, Mock BJ, Sorenson JA. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage. 1998;7:119–32. doi:10.1006/nimg.1997.0315.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.