201
Views
18
CrossRef citations to date
0
Altmetric
Surgery

Comparison of Surgically Excised Premacular Membranes in Eyes with Macular Pucker and Proliferative Vitreoretinopathy

, , , , &
Pages 341-349 | Received 28 Jun 2018, Accepted 21 Oct 2018, Published online: 09 Jan 2019

References

  • Ng CH, Cheung N, Wang JJ, Islam AF, Kawasaki R, Meuer SM, Cotch MF, Klein BE, Klein R, Wong TY. Prevalence and risk factors for epiretinal membranes in a multi-ethnic United States population. Ophthalmology. 2011;118:694–99. doi:10.1016/j.ophtha.2010.08.009.
  • Mitchell P, Smith W, Chey T, Wang JJ, Chang A. Prevalence and associations of epiretinal membranes. The Blue Mountains Eye Study, Australia. Ophthalmology. 1997;104:1033–40.
  • Wiedemann P. Growth factors in retinal diseases: proliferative vitreoretinopathy, proliferative diabetic retinopathy, and retinal degeneration. Surv Ophthalmol. 1992;36:373–84.
  • Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmoulière A, Varga J, De Wever O, Mareel M, Gabbiani G. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol. 2012;180(4):1340–55. doi:10.1016/j.ajpath.2012.02.004.
  • Hinz B. The myofibroblasts: paradigm for a mechanically active cell. J Biomech. 2010;43:146–55. doi:10.1016/j.jbiomech.2009.09.020.
  • Hinz B. Myofibroblasts. Exp Eye Res. 2016;142:56–70. doi:10.1016/j.exer.2015.07.009.
  • Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C. Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell. 2001;12:2730–41. doi:10.1091/mbc.12.9.2730.
  • Guidry C, King JL, Mason JO 3rd. Fibrocontractive Muller cell phenotypes in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 2009;50:1929–39. doi:10.1167/iovs.08-2475.
  • Kohno RI, Hata Y, Kawahara S, Kita T, Arita R, Mochizuki Y, Aiello LP, Ishibashi T. Possible contribution of hyalocytes to idopathic epiretinal membrane formation and its contraction. Br J Ophthalmol. 2009;93:1020–26. doi:10.1136/bjo.2008.155069.
  • Zhao F, Gandorfer A, Haritoglou C, Scheler R, Schaumberger MM, Kampik A, Schumann RG. Epiretinal cell proliferation in macular pucker and vitreomacular traction syndrome: analysis of flat-mounted internal limiting membrane specimens. Retina. 2013;33:77–88. doi:10.1097/IAE.0b013e3182602087.
  • Gandorfer A, Schumann RG, Haritoglou C, Kampik A. III.C. Pathology of vitreomaculopathies. In: Sebag J, editor. Vitreous. New York, NY: Springer. 2014: p. 280.
  • Alge CS, Priglinger SG, Kook D, Schmid H, Haritoglou C, Welge-Lussen U, Kampik A. Galectin-1 influences migration of retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2016;47(1):415–26. doi:10.1167/iovs.05-0308.
  • Shu DY, Lovicu FJ. Myofibroblast transdifferentiation: the dark force in ocular wound healing and fibrosis. Prog Retin Eye Res. 2017;60:44–65. doi:10.1016/j.preteyeres.2017.08.001.
  • Wormstone IM. Posterior capsule opacification: a cell biological perspective. Exp Eye Res. 2002;74:337–47. doi:10.1006/exer.2001.1153.
  • Hinz B. It has to be the αv: myofibroblast integrins activate latent TGF-β1. Nat Med. 2013;19:1567–68. doi:10.1038/nm.3421.
  • Rønnov-Jessen L, Petersen OW. Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest. 1993;68:696–707.
  • Wipff PJ, Rifkin DB, Meister JJ, Hinz B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol. 2007;179(6):1311–23. doi:10.1083/jcb.200704042.
  • Zhou Y, Hagood JS, Lu B, Merryman WD, Murphy-Ullrich JE. Thy-1-integrin alphav beta5 interactions inhibit lung fibroblast contraction-induced latent transforming growth factor-beta1 activation and myofibroblast differentiation. J Biol Chem. 2010;285(29):22382–93. doi:10.1074/jbc.M110.126227.
  • Worthington JJ, Klementowicz JE, Travis MA. TGFβ: a sleeping giant awoken by integrins. Trends Biochem Sci. 2011;36(1):47–54. doi:10.1016/j.tibs.2010.08.002.
  • Argüeso P, Panjwani N. Focus on molecules: galectin-3. Exp Eye Res. 2011;92(1):2–3. doi:10.1016/j.exer.2010.11.009.
  • Priglinger CS, Obermann J, Szober CM, Merl-Pham J, Ohmayer U, Behler J, Gruhn F, Kreutzer TC, Wertheimer C, Geerlof A, et al. Epithelial-to-mesenchymal transition of RPE cells in vitro confers increased β1,6-N-glycosylation and increased susceptibility to Galectin-3 binding. PLoS One. 2016;11(1):e0146887. doi:10.1371/journal.pone.0146887.
  • Abu El-Asrar AM, Missotten L, Geboes K. Expression of myofibroblast activation molecules in proliferative vitreoretinopathy epiretinal membranes. Acta Ophthalmol. 2011;89(2):e115–21. doi:10.1111/j.1755-3768.2010.01916.x.
  • Nawroth R, Hartmann A, Wild P, Lehmann J, Stöhr R, Gschwend JE, Retz M. EMMPRIN (CD147). A prognostic and potentially therapeutic marker in urothelial cancer. Pathologe. 2010;31 Suppl 2:251–54. doi:10.1007/s00292-010-1328-8.
  • Priglinger CS, Szober CM, Priglinger SG, Merl J, Euler KN, Kernt M, Gondi G, Behler J, Geerlof A, Kampik A, et al. Galectin-3 induces clustering of CD147 and integrin-β1 transmembrane glycoprotein receptors on the RPE cell surface. PLoS One. 2013;8(7):e70011. doi:10.1371/journal.pone.0070011.
  • O’Hare M, Roberts LM, Lord JM. Biological activity of recombinant Ricinus communis agglutinin A chain produced in Escherichia coli. FEBS Lett. 1992;299:209–12.
  • Koide H, Suganuma T, Murata F, Ohba N. Ultrastructural localization of lectin receptors in the monkey retinal photoreceptors and pigment epithelium: application of lectin-gold complexes on thin sections. Exp Eye Res. 1986;43:343–54.
  • Weller M, Esser P, Heimann K, Wiedemann P. Retinal microglia: a new cell in idiopathic proliferative vitreoretinopathy? Exp Eye Res. 1991;53:275–81.
  • Asiyo-Vogel MN, El-Hifnawi ES, Bopp S, Laqua H. The vascular component of proliferative vitreoretinopathy membranes: an immunohistochemical and ultrastructural study. Retina. 1998;18:56–61.
  • Compera D, Entchev E, Haritoglou C, Scheler R, Mayer WJ, Wolf A, Kampik A, Schumann RG. Lamellar hole-associated epiretinal proliferation in comparison to epiretinal membranes of macular pseudoholes. Am J Ophthalmol. 2015;160:373–84. doi:10.1016/j.ajo.2015.05.010.
  • Pang CE, Maberley DA, Freund KB, White VA, Rasmussen S, To E, Matsubara JA. Lamellar hole-associated epiretinal proliferation: a clinicopathologic correlation. Retina. 2016;36:1408–12. doi:10.1097/IAE.0000000000001069.
  • Zeng HY, Green WR, Tso MO. Microglial activation in human diabetic retinopathy. Arch Ophthalmol. 2008;126:227–32. doi:10.1001/archophthalmol.2007.65.
  • Rungger-Brändle E, Dosso AA, Leuenberger PM. Glial reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2000;41:1971–80.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.