334
Views
26
CrossRef citations to date
0
Altmetric
Retina and Optic Nerve

Influence of Axial Length on Parafoveal and Peripapillary Metrics from Swept Source Optical Coherence Tomography Angiography

, , ORCID Icon &
Pages 980-986 | Received 15 Jan 2019, Accepted 03 Apr 2019, Published online: 29 Apr 2019

References

  • Savastano M, Lumbroso B, Rispoli M. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography. Retina. 2015;35(11):2196–203. doi:10.1097/IAE.0000000000000635.
  • Spaide RF, Jr KJ, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133(1):45–50. doi:10.1001/jamaophthalmol.2014.3616.
  • Pechauer AD, Jia Y, Liu L, Gao SS, Jiang C, Huang D. Optical coherence tomography angiography of peripapillary retinal blood flow response to hyperoxia oct angiography of retinal blood flow during hyperoxia. Invest Ophthalmol Vis Sci. 2015;56(5):3287–91. doi:10.1167/iovs.15-16655.
  • Agemy SA, Scripsema NK, Shah CM, Chui T, Garcia PM, Lee JG, Gentile RC, Hsiao YS, Zhou Q, Ko T. Retinal vascular perfusion density mapping using optical cogerence tomography angiography in normals and diabetic retinopathy patients. Retina. 2015;35(11):2353–63. doi:10.1097/IAE.0000000000000862.
  • Kim A Y, Chu Z, Shahidzadeh A, Wang RK, Puliafito CA, Kashani AH. Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT362–OCT370. doi:10.1167/iovs.15-18904.
  • Coscas F, Sellam A, Glacet-Bernard A, Jung C, Goudot M, Miere A, Souied EH. Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT211. doi:10.1167/iovs.15-18793.
  • Shahlaee A, W A S, Hsu J, E A S, M A K, Sridhar J, B K H, C L S, Ho AC. In vivo assessment of macular vascular density in healthy human eyes using optical coherence tomography angiography. Am J Ophthalmol. 2016;165:39–46. doi:10.1016/j.ajo.2016.02.018.
  • Lei J, Yi E, Suo Y, Chen C, Xu X, Ding W, N S A, Fan X, Lu H. Distinctive analysis of macular superficial capillaries and large vessels using optical coherence tomographic angiography in healthy and diabetic eyes. Invest Ophthalmol Vis Sci. 2018;59(5):1937. doi:10.1167/iovs.17-23676.
  • Uji A, Balasubramanian S, Lei J, Baghdasaryan E, Alsheikh M, Sadda SR. Choriocapillaris imaging using multiple en face optical coherence tomography angiography image averaging. JAMA Ophthalmol. 2017;135(11):1197–204. doi:10.1001/jamaophthalmol.2017.3904.
  • Wang X, Kong X, Jiang C, Li M, Yu J, Sun X. Is the peripapillary retinal perfusion related to myopia in healthy eyes? A prospective comparative study. BMJ Open. 2016;6(3):e010791. doi:10.1136/bmjopen-2015-010791.
  • Yang Y, Wang J, Jiang H, Yang X, Feng L, Hu L, Wang L, Lu F, Shen M. Retinal microvasculature alteration in high myopia. Invest Ophthalmol Vis Sci. 2016;57(14):6020. doi:10.1167/iovs.16-19542.
  • Fujiwara A, Morizane Y, Hosokawa M, Kimura S, Shiode Y, Hirano M, Doi S, Toshima S, Takahashi K, Hosogi M. Factors affecting foveal avascular zone in healthy eyes: an examination using swept-source optical coherence tomography angiography. Plos One. 2017;12(11):e0188572. doi:10.1371/journal.pone.0188572.
  • Tan CS, Lim LW, Chow VS, Chay IW, Tan S, Cheong KX, Tan GT, Sadda SR. Optical coherence tomography angiography evaluation of the parafoveal vasculature and its relationship with ocular factors. Invest Ophthalmol Vis Sci. 2016;57(9):OCT224. doi:10.1167/iovs.15-18869.
  • Sampson DM, Gong P, An D, Menghini M, Hansen A, Mackey DA, Sampson DD, Chen FK. Axial length variation impacts on superficial retinal vessel density and foveal avascular zone area measurements using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2017;58(7):3065. doi:10.1167/iovs.17-21551.
  • Sawada A, Tomidokoro A, Araie M, Iwase A, Yamamoto T. Refractive errors in an elderly japanese population: the tajimi study. Ophthalmology. 2008;115(2):363–370.e363. doi:10.1016/j.ophtha.2007.03.075.
  • Wong TY, Foster PJ, Hee J, Ng TP, Tielsch JM, Chew SJ, Johnson GJ, Seah SKLJ. Seah S K L J. Prevalence and risk factors for refractive errors in adult chinese in singapore. Invest Ophthalmol Vis Sci. 2000;41:2486–94.
  • Pan CW, Wong TY, Chang L, Lin XY, Lavanya R, Zheng YF, Kok YO, Wu RY, Aung T, Saw SM. Ocular biometry in an urban indian population: the singapore indian eye study (sindi). Invest Ophthalmol Vis Sci. 2011;52(9):6636–42. doi:10.1167/iovs.10-7148.
  • Yin G, Li JL, Ping T, Yan YL, Yi F, Liang X, Jonas JB. Outdoor activity and myopia progression in 4-year follow-up of chinese primary school children: the beijing children eye study. PLos One. 2017;12(4):e0175921. doi:10.1371/journal.pone.0175921.
  • Bennett AG, Rudnicka AR, Edgar DF. Improvements on littmann‘s method of determining the size of retinal features by fundus photography. Graefes Arch Clin Exp Ophthalmol. 1994;232:361–67.
  • Ohnomatsui K, Kawasaki R, Jonas JB, Cheung CM, Saw SM, Verhoeven VJ, Klaver CC, Moriyama M, Shinohara K, Kawasaki Y. International photographic classification and grading system for myopic maculopathy. Am J Ophthalmol. 2015;159(5):877–883.e877. doi:10.1016/j.ajo.2015.01.022.
  • Stanga P, Tsamis E, Papayannis A, Stringa F, Cole T, Jalil A. Swept-source optical coherence tomography angio™ (topcon corp, japan): technology review. Dev Ophthalmol. 2016;56:13–17. doi:10.1159/000442771.
  • Williams DT. Determination of the true size of an object on the fundus of the living eye. Optom Vis Sci. 1992;69:717–20.
  • Lim LS, Cheung C, Lim X, Mitchell P, Wong TY, Saw SM. Influence of refractive error and axial length on retinal vessel geometric characteristics. Invest Ophthalmol Vis Sci. 2011;52(2):669–78. doi:10.1167/iovs.10-6184.
  • Kim J, Kim T, Lee E, Girard M, Mari J. Microvascular changes in peripapillary and optic nerve head tissues after trabeculectomy in primary open-angle glaucoma. Bone Marrow Transplantation. 2018;59:4614–21.
  • Akagi T, Zangwill LM, Shoji T, Min HS, Saunders LJ, Yarmohammadi A, Manalastas PIC, Penteado RC, Weinreb RN. Optic disc microvasculature dropout in primary open-angle glaucoma measured with optical coherence tomography angiography. PLoS One. 2018;13:8. doi:10.1371/journal.pone.0201729.
  • Sung M, Lee T, Heo H, Park S. Clinical features of superficial and deep peripapillary microvascular density in healthy myopic eyes. PLoS One. 2017;12(10):e0187160. doi:10.1371/journal.pone.0187160.
  • AAO new product report. Ophthalmology management. 2012;16:60–6. http://www.ophthalmologymanagement.com/articleviewer.aspx?articleID=107777.
  • Suwan Y, Fard MA, Geyman LS, Tantraworasin A, Chui TY, Rosen RB, Ritch R. Association of myopia with peripapillary perfused capillary density in patients with glaucoma: an optical coherence tomography angiography study. JAMA Ophthalmol. 2018;136:5. doi:10.1001/jamaophthalmol.2018.0776.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.