427
Views
18
CrossRef citations to date
0
Altmetric
Retina

Taurine Protects Retinal Cells and Improves Synaptic Connections in Early Diabetic Rats

, , , , &
Pages 52-63 | Received 05 Jul 2019, Accepted 05 Aug 2019, Published online: 22 Aug 2019

References

  • Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376:124–36. doi:10.1016/S0140-6736(09)62124-3.
  • Zafar S, Sachdeva M, Frankfort BJ, Channa R. Retinal neurodegeneration as an early manifestation of diabetic eye disease and potential neuroprotective therapies. Curr Diab Rep. 2019;19:17. doi:10.1007/s11892-019-1134-5.
  • Simó R, Stitt AW, Gardner TW. Neurodegeneration in diabetic retinopathy: does it really matter? Diabetologia. 2018; 61: 1902–1912;2018(61).
  • Asnaghi V, Gerhardinger C, Hoehn T, Adeboje A, Lorenzi M. A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat. Diabetes. 2003;52:506–11. doi:10.2337/diabetes.52.2.506.
  • Antonetti DA, Barber AJ, Bronson SK, Freeman WM, Gardner TW, Jefferson LS, Kester M, Kimball SR, Krady JK, LaNoue KF, et al. JDRF diabetic retinopathy center group. Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes. 2006;55:2401–11. doi:10.2337/db05-1635.
  • Fletcher EL, Phipps JA, Ward MM, Puthussery T, Wilkinson-Berka JL. Neuronal and glial cell abnormality as predictors of progression of diabetic retinopathy. Curr Pharm Des. 2007;13:2699–712. doi:10.2174/138161207781662920.
  • Barber AJ, Gardner TW, Abcouwer SF. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2011;52:1156–63. doi:10.1167/iovs.10-6293.
  • Villarroel M, Ciudin A, Hernández C, Simó R. Neurodegeneration. An early event of diabetic retinopathy. World J Diabetes. 2010;1:57–64. doi:10.4239/wjd.v1.i2.57.
  • Zhang Y, Zhang J, Wang Q, Lei X, Xu GT, Ye W. Intravitreal injection of exendin-4 analogue protects retinal cells in early diabetic rats. Invest Ophthalmol Vis Sci. 2011;52:278–85. doi:10.1167/iovs.09-4727.
  • Zhang J, Wu Y, Jin Y, Ji F, Sinclair SH, Luo Y, Xu G, Lu L, Dai W, Yanoff M, et al. Intravitreal injection of erythropoietin protects both retinal vascular and neuronal cells in early diabetes. Invest Ophthalmol Vis Sci. 2008;49:732–42. doi:10.1167/iovs.07-0721.
  • Rungger-Brändle E, Dosso AA, Leuenberger PM. Glial reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2000;41:1971–80.
  • Kowluru RA, Abbas SN. Diabetes-induced mitochondrial dysfunction in the retina. Invest Ophthalmol Vis Sci. 2003;44:5327–34. doi:10.1167/iovs.03-0353.
  • Korsmeyer SJ, Shutter JR, Veis DJ, Merry DE, Oltvai ZN. Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol. 1993;4:327–32.
  • Korsmeyer SJ. Bcl-2 gene family and the regulation of programmed cell death. Cancer Res. 1999;59:1693s–1700s.
  • Podestà F, Romeo G, Liu WH, Krajewski S, Reed JC, Gerhardinger C, Lorenzi M. Bax is increased in the retina of diabetic subjects and is associated with pericyte apoptosis in vivo and in vitro. Am J Pathol. 2000;156:1025–32. doi:10.1016/S0002-9440(10)64970-X.
  • Shen J, Wu Y, Xu JY, Zhang J, Sinclair SH, Yanoff M, Xu G, Li W, Xu GT. ERK- and Akt-dependent neuroprotection by erythropoietin (EPO) against glyoxal-AGEs via modulation of Bcl-xL, Bax and BAD. Invest Ophthalmol Vis Sci. 2010;51:35–46. doi:10.1167/iovs.09-3544.
  • Oshitari T, Yamamoto S, Hata N, Roy S. Mitochondria- and caspase- dependent cell death pathway involved in neuronal degeneration in diabetic retinopathy. Br J Ophthalmol. 2008;92:552–56. doi:10.1136/bjo.2007.132308.
  • Li Q, Puro DG. Diabetes-induced dysfunction of the glutamate transporter in retinal Müller cells. Invest Ophthalmol Vis Sci. 2002;43:3109–16.
  • Gardner TW, Antonetti DA, Barber AJ, LaNoue KF, Levison SW. Diabetic retinopathy: more than meets the eye. Surv Ophthalmol. 2002;47:S253–262.
  • Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P, Osborne NN, Reichenbach A. Cellular signaling and factors involved in Müller cell gliosis. Neuro-protective and detrimental effects. Prog Retin Eye Res. 2009;28:423–51. doi:10.1016/j.preteyeres.2009.07.001.
  • Tzekov R, Arden GB. The electroretinogram in diabetic retinopathy. Surv Ophthalmol. 1999;44:53–60.
  • Fletcher EL, Phipps JA, Ward MM, Puthussery T, Wilkinson-Berka JL. Neuronal and glial cell abnormality as predictors of progression of diabetic retinopathy.Curr. Pharm Des. 2007;13:2699–712.
  • Holopigian K, Seiple W, Lorenzo M, Carr R. A comparison of photopic and scotopic electroretinographic changes in early diabetic retinopathy. Invest Ophthalmol Vis Sci. 1992;33:2773–80.
  • Papakostopoulos D, Hart JC, Corrall RJ, Harney B. The scotopic electroretinogram to blue flashes and pattern reversal visual evoked potentials in insulin dependent diabetes.Int. J Psychophysiol. 1996;21(1):33–43. doi:10.1016/0167-8760(95)00040-2.
  • Aung MH, Kim MK, Olson DE, Thule PM, Pardue MT. Early visual deficits in streptozotocin-induced diabetic Long Evans rats. Invest Ophthalmol Vis Sci. 2013;54:1370–77. doi:10.1167/iovs.12-10927.
  • Pardue MT, Barnes CS, Kim MK, Aung MH, Amarnath R, Olson DE, Thulé PM. Rodent hyperglycemia-induced inner retinal deficits are mirrored in human diabetes. Transl Vis Sci Technol. 2014;3:6. doi:10.1167/tvst.3.6.8.
  • Castilho Á, Ambrósio AF, Hartveit E, Veruki ML. Disruption of a neural microcircuit in the rod pathway of the mammalian retina by diabetes mellitus.J. Neurosci. 2015;35(13):5422–33. doi:10.1523/JNEUROSCI.5285-14.2015.
  • Solomon SG, Lennie P. The machinery of colour vision.Nat. Rev Neurosci. 2007;8(4):276–86. doi:10.1038/nrn2094.
  • Roorda A, Williams DR. The arrangement of the three cone classes in the living human. Nature. 1999;397(6719):520–22. doi:10.1038/17383.
  • Sokol S, Moskowitz A, Skarf B, Evans R, Molitch M, Senior B. Contrast sensitivity in diabetics with and without background retinopathy. Arch Ophthalmol. 1985;103(1):51–54. doi:10.1001/archopht.1985.01050010055018.
  • Greenstein VC, Shapiro A, Zaidi Q, Hood DC. Psychophysical evidence for post-receptoral sensitivity loss in diabetics. Invest Ophthalmol Vis Sci. 1992;33:2781–90.
  • Hardy KJ, Fisher C, Heath P, Foster DH, Scarpello JH. Comparison of colour discrimination and electroretinography in evaluation of visual pathway dysfunction in aretinopathic IDDM patients.Br. J Ophthalmol. 1995;79:35–37.
  • Barber AJ, Baccouche B. Neurodegeneration in diabetic retinopathy: Potential for novel therapies.Vision. Res. 2017;139:82–92.
  • Dhingra A, Vardi N. mGlu receptors in the retina.Wiley. Interdiscip Rev Membr Transp Signal. 2012;1:641–53. doi:10.1002/wmts.43.
  • Koulen P, Fletcher EL, Craven SE, Bredt DS, Wässle H. Immunocytochemical localization of the postsynaptic density protein PSD-95 in the mammalian retina.J. Neurosci. 1998;18:10136–49. doi:10.1523/JNEUROSCI.18-23-10136.1998.
  • Nakajima Y, Iwakabe H, Akazawa C, Nawa H, Shigemoto R, Mizuno N, Nakanishi S. Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. J Biol Chem. 1993;268:11868–73.
  • Masu M, Iwakabe H, Tagawa Y, Miyoshi T, Yamashita M, Fukuda Y, Sasaki H, Hiroi K, Nakamura Y, Shigemoto R, et al. Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6. Cell. 1995;80(5):757–65.
  • Ripps H, Shen W. Review: taurine: a “very essential” amino acid. Mol Vis. 2012;18:2673–86.
  • Zeng K, Xu H, Chen K, Zhu J, Zhou Y, Zhang Q, Mantian M. Effects of taurine on glutamate uptake and degradation in Müller cells under diabetic conditions via antioxidant mechanism. Mol Cell Neurosci. 2010;45(2):192–99. doi:10.1016/j.mcn.2010.06.010.
  • Froger N, Moutsimilli L, Cadetti L, Jammoul F, Wang QP, Fan Y, Gaucher D, Rosolen SG, Neveux N, Cynober L, et al. Taurine: the comeback of a neutraceutical in the prevention of retinal degenerations. Prog Retin Eye Res. 2014;41:44–63. doi:10.1016/j.preteyeres.2014.03.001.
  • Bianchi L, Lari R, Anichini R, De Bellis A, Berti A, Napoli Z, Seghieri G, Franconi F. Taurine transporter gene expression in peripheral mononuclear blood cells of type 2 diabetic patients. Amino Acids. 2012;42(6):2267–74. doi:10.1007/s00726-011-0968-1.
  • Duboc A, Hanoteau N, Simonutti M, Rudolf G, Nehlig A, Sahel JA, Picaud S. Vigabatrin, the GABA- transaminase inhibitor, damages cone photoreceptors in rats. Ann Neurol. 2004;55:695–705. doi:10.1002/ana.20081.
  • Neveux N, David P, Cynober L. Measurement of amino acid concentration in biological fluids and tissues using ionexchange chromatography. In: Cynober LA, editor. Metabolic &therapeutic aspects of amino acids in clinical nutrition. 2nd ed. Boca Raton (FL):CRC Press; 2004;17–28.
  • Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes.Early onset and effect of insulin. J Clin Invest. 1998;102(4):783–91. doi:10.1172/JCI2425.
  • Lombardini JB. Taurine: retinal function. Brain Res Brain Res Rev. 1991;16:151–69.
  • Kubo Y, Akanuma SI, Hosoya KI. Impact of SLC6A transporters in physiological taurine transport at the blood-retinal barrier and in the liver. Biol Pharm Bull. 2016;39(12):1903–11. doi:10.1248/bpb.b16-00597.
  • Obrosova IG, Minchenko AG, Marinescu V, Fathallah L, Kennedy A, Stockert CM, Frank RN, Stevens MJ. Antioxidants attenuate early up regulation of retinal vascular endothelial growth factor in streptozotocin- diabetic rats. Diabetologia. 2001;44(9):1102–10. doi:10.1007/s001250100631.
  • Fan J, Long H, Li Y, Liu Y, Zhou W, Li Q, Yin G, Zhang N, Cai W. Edaravone protects against glutamate-induced PERK/EIF2α/ATF4 integrated stress response and activation of caspase-12. Brain Res. 2013;1519:1–8. doi:10.1016/j.brainres.2013.04.037.
  • Perlman I. The electroretinogram:ERG.Webvision: The organization of the retina and visual system, Online Textbook of the visual system. Salt Lake City (Utal, USA): University of Utal; 2011.
  • Sieving PA, Murayama K, Naarendorp F. Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci. 1994;11:519–32.
  • Mittag TW, Danias J, Pohorenec G, Yuan HM, Burakgazi E, Chalmers-Redman R, Podos SM, Tatton WG. Retinal damage after 3 to 4 months of elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2000;41:3451–3459.
  • Mittag TW, Danias J, Pohorenec G, HM Y, Burakgazi E, Chalmers-Redman R, Podos SM, Tatton WG. Selective ganglion cell functional loss in rats with experimental glaucoma. Invest Ophthalmol Vis Sci. 2004;45:1854–62. doi:10.1167/iovs.03-1411.
  • Froger N, Cadetti L, Lorach H, Martins J, Bemelmans AP, Dubus E, Degardin J, Pain D, Forster V, Chicaud L, et al. Taurine provides neuroprotection against retinal ganglion cell degeneration. PLoS One. 2012;7:e42017. doi:10.1371/journal.pone.0042017.
  • Wässle H, Puller C, Müller F, Haverkamp S. Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. J Neurosci. 2009;29:106–17. doi:10.1523/JNEUROSCI.4442-08.2009.
  • Hayes KC, Carey RE, Schmidt SY. Retinal degeneration associated with taurine deficiency in the cat. Science. 1975;188(4191):949–51. doi:10.1126/science.1138364.
  • Gaucher D, Arnault E, Husson Z, Froger N, Dubus E, Gondouin P, Dherbécourt D, Degardin J, Simonutti M, Fouquet S, et al. Taurine deficiency damages retinal neurones: cone photoreceptors and retinal ganglion cells. Amino Acids. 2012;43(5):1979–93. doi:10.1007/s00726-012-1273-3.
  • Jammoul F, Dégardin J, Pain D, Gondouin P, Simonutti M, Dubus E, Caplette R, Fouquet S, Craft CM, Sahel JA, et al. Taurine deficiency damages photoreceptors and retinal ganglion cells in vigabatrin-treated neonatal rats. Mol Cell Neurosci. 2010;43(4):414–21. doi:10.1016/j.mcn.2010.01.008.
  • Barber AJ, Gardner TW, Abcouwer SF. The significance of vascular and neural apoptosis to the pathology of diabeitc retinopathy. Invest Ophthalmol Vis Sci. 2011;52:1156–63. doi:10.1167/iovs.10-6293.
  • Zhang Y, Zhang J, Wang Q, Lei X, Chu Q, Xu GT, Ye W. Intravitreal injection of exendin-4 analogue protects retinal cells in early diabetic rats. Invest Ophthalmol Vis Sci. 2011;52:278–85. doi:10.1167/iovs.09-4727.
  • Zhang J, Wu Y, Jin Y, Ji F, Sinclair SH, Luo Y, Xu G, Lu L, Dai W, Yanoff M, et al. Intravitreal injection of erythropoietin protects both retinal vascular and neuronal cells in early diabetes. Invest Ophthalmol Vis Sci. 2008;49:732–42. doi:10.1167/iovs.07-0721.
  • Hadj-Saïd W, Froger N, Ivkovic I, Jiménez-López M, Dubus É, Dégardin-Chicaud J, Simonutti M, Quénol C, Neveux N, Villegas-Pérez MP, et al. Quantitative and topographical analysis of the losses of cone photoreceptors and retinal ganglion cells under taurine depletion. Invest Ophthalmol Vis Sci. 2016;57(11):4692–703. doi:10.1167/iovs.16-19535.
  • IR L, Zhang S, LE W, Karakelides H, Raftery D, Nair KS. Quantitative metabolomics by H-NMR and LC-MS/MS confirm altered metabolic pathways in diabetes. PLoS One. 2010;5(5):e10538. doi:10.1371/journal.pone.0010538.
  • Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1988;1:623–34.
  • Gu L, Xu H, Wang F, Xu G, Sinha D, Wang J, Xu JY, Tian H, Gao F, Li W, et al. Erythropoietin exerts a neuroprotective function against glutamate neurotoxicity in experimental diabetic retina. Invest Ophthalmol Vis Sci. 2014;55(12):8208–22. doi:10.1167/iovs.14-14435.
  • Gowda K, Zinnanti WJ, LaNoue KF. The influence of diabetes on glutamate metabolism in ratinas. J Neurochem. 2011;117(2):309–20. doi:10.1111/j.1471-4159.2011.07206.x.
  • Ramsey DJ, Ripps H, Qian H. An electrophysiological study of retinal function in the diabetic female rat. Invest Ophthalmol Vis Sci. 2006;47(11):5116–24. doi:10.1167/iovs.06-0364.
  • Tomi M, Tajima A, Tachikawa M, Hosoya K. Function of taurine transporter (Slc6a6/TauT) as a GABA transporting protein and its relevance to GABA transport in rat retinal capillary endothelial cells. Biochim Biophys Acta. 2008;1778(10):2138–42. doi:10.1016/j.bbamem.2008.04.012.
  • Ramsey DJ, Ripps H, Qian H. Streptozotocin-induced diabetes modulates GABA receptor activity of rat retinal neurons. Exp Eye Res. 2007;85(3):413–22. doi:10.1016/j.exer.2007.06.005.
  • Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–53. doi:10.1038/nm.2307.
  • Tessari P, Coracina A, Puricelli L, Vettore M, Cosma A, Millioni R, Cecchet D, Avogaro A, Tiengo A, Kiwanuka E. Acute effect of insulin on nitric oxide synthesis in humans: a precursor-product isotopic study. Am J Physiol Endocrinol Metab. 2007;293(3):E776–E782. doi:10.1152/ajpendo.00481.2006.
  • Voaden MJ, Lake N, Marshall J, Morjaria B. Studies on the distribution of taurine and other neuroactive amino acids in the retina. Exp Eye Res. 1977;25:249–57.
  • Pow DV, Sullivan R, Reye P, Hermanussen S. Localization of taurine transporters,taurine, and (3)H taurine accumulation in the rat retina, pituitary, and brain. Glia. 2002;37:153–68.
  • Hillenkamp J, Hussain AA, Jackson TL, Cunningham JR, Marshall J. Taurine uptake by human retinal pigment epithelium: implications for the transport of small solutes between the choroid and the outer retina. Invest Ophthalmol Vis. 2004;45(12):4529–34. doi:10.1167/iovs.04-0919.
  • Kowluru RA, Chan PS. Oxidative stress and diabetic retinopathy. Exp Diabetes Res. 2007;2007:43603. doi:10.1155/2007/43603.
  • Produit-Zengaffinen N, Pournaras CJ, Schorderet DF. Retinal ischemia-induced apoptosis is associated with alteration in Bax and Bcl-x(L) expression rather than modifications in Bak and Bcl-2. Mol Vis. 2009;15:2101–10.
  • Fan Y, Liu K, Wang Q, Ruan Y, Zhang Y, Ye W. Exendin-4 protects retinal cells from early diabetes in Goto-Kakizaki rats by increasing the Bcl-2/Bax and Bcl-xL/Bax ratios and reducing reactive gliosis. Mol Vis. 2014;20:1557–68.
  • Li S, Guan H, Qian Z, Sun Y, Gao C, Li G, Yang Y, Piao F, Hu S. Taurine inhibits 2,5-hexanedione-induced oxidative stress and mitochondria-dependent apoptosis in PC12 cells. Ind Health. 2017;55(2):108–18. doi:10.2486/indhealth.2016-0044.
  • Adedara IA, Olabiyi BF, Ojuade TD, Idris UF, Onibiyo EM, Farombi EO. Taurine reverses sodium fluoride-mediated increase in inflammation, caspase-3 activity and oxidative damage along the brain-pituitary-gonadal axis in male rats. Can J Physiol Pharmacol. 2017;95(9):1019–29. doi:10.1139/cjpp-2016-0641.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.