398
Views
22
CrossRef citations to date
0
Altmetric
Glaucoma

Optic Nerve Traction During Adduction in Open Angle Glaucoma with Normal versus Elevated Intraocular Pressure

, ORCID Icon, , , , , , & show all
Pages 199-210 | Received 22 Jul 2019, Accepted 21 Aug 2019, Published online: 02 Dec 2019

References

  • Kapetanakis VV, Chan MP, Foster PJ, Cook DG, Owen CG, Rudnicka AR. Global variations and time trends in the prevalence of primary open angle glaucoma (POAG): A systematic review and meta-analysis. Br J Ophthalmol. 2016;100:86–93. doi:10.1136/bjophthalmol-2015-307223.
  • Kingman S. Glaucoma is second leading cause of blindness globally. Bull World Health Organ. 2004;82:887–88.
  • Killer HE, Pircher A. Normal tension glaucoma: review of current understanding and mechanisms of the pathogenesis. Eye (Lond). 2018;32:924–30. doi:10.1038/s41433-018-0042-2.
  • Chan MP, Grossi CM, Khawaja AP, Yip JLY, Khaw K-T, Patel PJ, Khaw PT, Morgan JE, Vernon SA, Foster PJ. Associations with intraocular pressure in a large cohort: Results from the UK biobank. Ophthalmology. 2016;123:771–82. doi:10.1016/j.ophtha.2015.11.031.
  • Chang I, Caprioli J, Ou Y. Surgical management of pediatric glaucoma. Dev Ophthalmol. 2017;59:165–78. doi:10.1159/000458495.
  • Zhang X, Liu Y, Wang W, Chen S, Li F, Huang W, Aung T, Wang N. Why does acute primary angle closure happen? Potential risk factors for acute primary angle closure. Surv Ophthalmol. 2017;62:635–47. doi:10.1016/j.survophthal.2017.04.002.
  • Tan AN, Cornelissen MF, Webers CAB, Erckens RJ, Berendschot TTJM, Beckers HJM. Outcomes of severe uveitic glaucoma treated with Baerveldt implant: can blindness be prevented?. Acta Ophthalmol. 2018;96:24–30. doi:10.1111/aos.13489.
  • Bai HQ, Yao L, Wang DB, Jin R, Wang Y-X. Causes and treatments of traumatic secondary glaucoma. Eur J Ophthalmol. 2009;19:201–06.
  • Kwong JM, Vo N, Quan A, Nam M, Kyung H, Yu F, Piri N, Caprioli J. The dark phase intraocular pressure elevation and retinal ganglion cell degeneration in a rat model of experimental glaucoma. Exp Eye Res. 2013;112:21–28. doi:10.1016/j.exer.2013.04.008.
  • Samuels BC, Siegwart JT, Zhan W, Hethcox L, Chimento M, Whitley R, Downs JC, Girkin CA. A novel tree shrew (Tupaia belangeri) model of glaucoma. Invest Ophthalmol Vis Sci. 2018;59:3136–43. doi:10.1167/iovs.18-24261.
  • Guo C, Qu X, Rangaswamy N, Leehy B, Xiang C, Rice D, Prasanna G, Cho K-S. A murine glaucoma model induced by rapid in vivo photopolymerization of hyaluronic acid glycidyl methacrylate. PLoS One. 2018;13:e0196529. doi:10.1371/journal.pone.0196529.
  • Quigley HA. Use of animal models and techniques in glaucoma research: Introduction. Methods Mol Biol. 2018;1695:1–10. doi:10.1007/978-1-4939-7407-8_1.
  • Shi D, Funayama T, Mashima Y, Takano Y, Shimizu A, Yamamoto K, Mengkegale M, Miyazawa A, Yasuda N, Fukuchi T, et al. Association of HK2 and NCK2 with normal tension glaucoma in the Japanese population. PLoS One. 2013;8:e54115. doi:10.1371/journal.pone.0054115.
  • Iwase A, Suzuki Y, Araie M, Yamamoto T, Abe H, Shirato S, Kuwayama Y, Mishima HK, Shimizu H, Tomita G, et al. The prevalence of primary open-angle glaucoma in Japanese: the Tajimi Study. Ophthalmology. 2004;111:1641–48. doi:10.1016/j.ophtha.2004.03.029.
  • Kim CS, Seong GJ, Lee NH, Song K-C. Prevalence of primary open-angle glaucoma in central South Korea the Namil study. Ophthalmology. 2011;118:1024–30. doi:10.1016/j.ophtha.2010.10.016.
  • Ha A, Kim YK, Jeoumg JW, Kim DM, Park KH. Association of angle width with progression of normal-tension glaucoma. A minimum 7-year follow-up study. JAMA Ophthalmol. 2019;137:13–20. doi:10.1001/jamaophthalmol.2018.4333.
  • Zhao J, Solano MM, Oldenburg CE, Liu T, Wang Y, Wang N, Lin SC. Prevalence of normal-tension glaucoma in the Chinese population: A systematic review and meta-analysis. Am J Ophthalmol. 2019;199:101–10. doi:10.1016/j.ajo.2018.10.017.
  • Sommer A, Tielsch JM, Katz J, Quigley HA, Gottsch JD, Javitt JC, Martone JF, Royall RM, Witt KA, Ezrine S. Racial differences in the cause-specific prevalence of blindness in East Baltimore. N Engl J Med. 1991;325:1412–17. doi:10.1056/NEJM199111143252004.
  • Bonomi L, Marchini G, Marraffa M, Bernardi P, De Franco I, Perfetti S, Varotto A, Tenna V. Prevalence of glaucoma and intraocular pressure distribution in a defined population. The Egna-Neumarkt study. Ophthalmology. 1998;105:209–15. doi:10.1016/s0161-6420(98)92665-3.
  • Klein BE, Klein R, Sponsel WE, Franke T, Cantor LB, Martone J, Menage MJ. Prevalence of glaucoma. The Beaver Dam Eye study. Ophthalmology. 1992;99:1499–504. doi:10.1016/s0161-6420(92)31774-9.
  • Rotchford AP, Johnson GJ. Glaucoma in Zulus: A population-based cross-sectional survey in a rural district in South Africa. Arch Ophthalmol. 2002;120:471–78. doi:10.1001/archopht.120.4.471.
  • Academy A. Primary open-angle glaucoma preferred practice pattern. San Francisco (CA): American Academy of Ophthalmology; 1992.
  • Mi XS, Yuan TF, So KF. The current research status of normal tension glaucoma. Clin Interv Aging. 2014;9:1563–71. doi:10.2147/CIA.S67263.
  • The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration.The AGIS Investigators. Am J Ophthalmol. 2000;130:429–40. doi:10.1016/s0002-9394(00)00538-9.
  • Collaborative Normal-Tension Glaucoma Study Group. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol. 1998;126:498–505. doi:10.1016/s0002-9394(98)00272-4.
  • Collaborative Normal-Tension Glaucoma Study Group. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol. 1998;126:487–97. doi:10.1016/s0002-9394(98)00223-2.
  • Caprioli J. The treatment of normal-tension glaucoma. Am J Ophthalmol. 1998;126:578–81. doi:10.1016/s0002-9394(98)00291-8.
  • Seol BR, Kim SH, Kim DM, Park KH, Jeoung JW, Kim SH. Influence of intraocular pressure reduction on progression of normal-tension glaucoma with myopic tilted disc and associated risk factors. Jap J Ophthalmol. 2017;62:230–36. doi:10.1007/s10384-017-0508-y.
  • Tseng VL, Kim CH, Romero PT, Yu F, Robertson-Brown KW, Phung L, Raygoza D, Caprioli J, Coleman AL. Risk factors and long-term outcomes in patients with low intraocular pressure after trabeculectomy. Ophthalmology. 2017;124:1457–65. doi:10.1016/j.ophtha.2017.05.014.
  • Song BJ, Caprioli J. New directions in the treatment of normal tension glaucoma. Indian J Ophthalmol. 2014;62:529–37. doi:10.4103/0301-4738.133481.
  • Choi YJ, Kim M, Park KH, Kim DM, Kim SH. The risk of newly developed visual impairment in treated normal-tension glaucoma: 10-year follow-up. Acta Ophthalmol. 2014;92:e644–9. doi:10.1111/aos.12411.
  • Siaudvytyte L, Januleviciene I, Ragauskas A, Bartusis L, Siesky B, Harris A. Update in intracranial pressure evaluation methods and translaminar pressure gradient role in glaucoma. Acta Ophthalmol Scand. 2015;93:9–15. doi:10.1111/aos.12502.
  • Jonas JB, Yang D, Wang N. Intracranial pressure and glaucoma. J Glaucoma. 2013;22(Suppl 5):S13–4. doi:10.1097/IJG.0b013e31829349bf.
  • Berdahl JP, Fautsch MP, Stinnett SS, Allingham RR. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Invest Ophthalmol Vis Sci. 2008;49:5412–18. doi:10.1167/iovs.08-2228.
  • Berdahl JP, Allingham RR. Intracranial pressure and glaucoma. Curr Opin Ophthalmol. 2010;21:106–11. doi:10.1097/ICU.0b013e32833651d8.
  • Gramer G, Weber BH, Gramer E. Migraine and vasospasm in glaucoma: Age-related evaluation of 2027 patients with glaucoma or ocular hypertension. Invest Ophthalmol Vis Sci. 2015;56:7999–8007. doi:10.1167/iovs.15-17274.
  • Pircher A, Remonda L, Weinreb RN, Killer HE. Translaminar pressure in Caucasian normal tension glaucoma patients. Acta Ophthalmol. 2017;95:e524–e31. doi:10.1111/aos.13302.
  • Linden C, Qvarlander S, Johannesson G, Johansson E, Östlund F, Malm J, Eklund A. Normal-tension glaucoma has normal intracranial pressure: A prospective study of intracranial pressure and intraocular pressure in different body positions. Ophthalmology. 2018;125:361–68. doi:10.1016/j.ophtha.2017.09.022.
  • Demer JL. Optic nerve sheath as a novel mechanical load on the globe in ocular duction. Invest Ophthalmol Vis Sci. 2016;57:1826–38. doi:10.1167/iovs.15-18718.
  • Wang X, Fisher LK, Milea D, Jonas JB, Girard MJA. Predictions of optic nerve traction forces and peripapillary tissue stresses following horizontal eye movements. Invest Ophthalmol Vis Sci. 2017;58:2044–53. doi:10.1167/iovs.16-21319.
  • Demer JL, Clark RA, Suh SY, Giaconi JA, Nouri-Mahdavi K, Law SK, Bonelli L, Coleman AL, Caprioli J. Magnetic resonance imaging of optic nerve traction during adduction in primary open-angle glaucoma with normal intraocular pressure. Invest Ophthalmol Vis Sci. 2017;58:4114–25. doi:10.1167/iovs.17-22093.
  • Shin A, Yoo L, Park C, Demer JL. Finite element biomechanics of optic nerve sheath traction in adduction. J Biomech Eng. 2017;139:101010.
  • Suh SY, Le A, Shin A, Park J, Demer JL. Progressive deformation of the optic nerve head and peripapillary structures by graded horizontal duction. Invest Ophthalmol Vis Sci. 2017;58:5015–21. doi:10.1167/iovs.17-22596.
  • Chang MY, Shin A, Park J, Nagiel A, Lalane RA, Schwartz SD, Demer JL. Deformation of optic nerve head and peripapillary tissues by horizontal duction. Am J Ophthalmol. 2017;174:85–94. doi:10.1016/j.ajo.2016.10.001.
  • Wang X, Rumpel H, Lim WE, Baskaran M, Perera SA, Nongpiur ME, Aung T, Milea D, Girard MJA. Finite element analysis predicts large optic nerve strains heads during horizontal eye movements. Invest Ophthalmol Vis Sci. 2016;57:2452–62. doi:10.1167/iovs.15-18986.
  • Lee WJ, Kim YJ, Kim JH, Hwang S, Shin SH, Lim HW, Hamann S. Changes in the optic nerve head induced by horizontal eye movements. PLoS One. 2018;13:e0204069. doi:10.1371/journal.pone.0204069.
  • Wang YX, Jiang R, Wang NL, Xu L, Jonas JB. Acute peripapillary retinal pigment epithelium changes associated with acute intraocular pressure elevation. Ophthalmology. 2015;122:2022–28. doi:10.1016/j.ophtha.2015.06.005.
  • Fortune B. Pulling and tugging on the retina: Mechanical impact of glaucoma beyond the optic nerve head. Inv Ophtalmol Vis Sci. 2019;60:26–35. doi:10.1167/iovs.18-25837.
  • Sibony PA. Gaze-evoked deformations of the peripapillary retina and papilledema and ischemic optic neuropathy. Inv Ophtalmol Vis Sci. 2016;57:4979–87. doi:10.1167/iovs.16-19931.
  • Jonas JB, Martus P, Horn FK, Jünemann A, Korth M, Budde WM. Predictive factors of the optic nerve head for development or progression of glaucomatous visual field loss. Invest Ophthalmol Vis Sci. 2004;45:2613–18. doi:10.1167/iovs.03-1274.
  • Xu L, Wang Y, Yang H, Jonas JB. Differences in parapapillary atrophy between glaucomatous and normal eyes: the Beijing Eye Study. Am J Ophthalmol. 2007;144:541–46. doi:10.1016/j.ajo.2007.05.038.
  • Jonas JB, Nguyen XN, Gusek GC, Naumann GO. Parapapillary chorioretinal atrophy in normal and glaucoma eyes. I. Morphometric data. Invest Ophthalmol Vis Sci. 1989;30:908–18.
  • Nakazawa M, Kurotaki J, Ruike H. Longterm findings in peripapillary crescent formation in eyes with mild or moderate myopia. Acta Ophthalmol. 2008;86:626–29. doi:10.1111/j.1600-0420.2007.01139.x.
  • Cho HK, Kee C. Population-based glaucoma prevalence studies in Asians. Surv Ophthalmol. 2014;59:434–47. doi:10.1016/j.survophthal.2013.09.003.
  • Dielemans I, Vingerling JR, Wolfs RC, Hofman A, Grobbee DE, de Jong PT. The prevalence of primary open-angle glaucoma in a population-based study in The Netherlands. The Rotterdam Study. Ophthalmology. 1994;101:1851–55. doi:10.1016/s0161-6420(94)31090-6.
  • Budenz DL, Huecker JB, Gedde SJ, Gordon M, Kass M. Thirteen-year follow-up of optic disc hemorrhages in the ocular hypertension treatment study. Am J Ophthalmol. 2016;174:126–33. doi:10.1016/j.ajo.2016.10.023.
  • Demer JL, Dusyanth A. T2 fast spin echo magnetic resonance imaging of extraocular muscles. J AAPOS. 2011;15:17–23. doi:10.1016/j.jaapos.2010.12.006.
  • Shin GS, Demer JL, Rosenbaum AL. High resolution dynamic magnetic resonance imaging in complicated strabismus. J Pediatr Ophthalmol Strabismus. 1996;33:282–90.
  • Demer JL, Kono R, Wright W. Magnetic resonance imaging of human extraocular muscles in convergence. J Neurophysiol. 2003;89:2072–85. doi:10.1152/jn.00636.2002.
  • Demer JL, Ortube MC, Engle EC, Thacker N. High resolution magnetic resonance imaging demonstrates abnormalities of motor nerves and extraocular muscles in patients with neuropathic strabismus. J AAPOS. 2006;10:135–42. doi:10.1016/j.jaapos.2005.12.006.
  • Demer JL, Clark RA. Magnetic resonance imaging demonstrates compartmental muscle mechanisms of human vertical fusional vergence. J Neurophysiol. 2015;113:2150–63. doi:10.1152/jn.00871.2014.
  • Clark RA, Miller JM, Demer JL. Three-dimensional location of human rectus pulleys by path inflections in secondary gaze positions. Invest Ophthalmol Vis Sci. 2000;41:3787–97.
  • Kono R, Clark RA, Demer JL. Active pulleys: Magnetic resonance imaging of rectus muscle paths in tertiary gazes. Invest Ophthalmol Vis Sci. 2002;43:2179–88.
  • Clark RA, Demer JL. Magnetic resonance imaging of the effects of horizontal rectus extraocular muscle surgery on pulley and globe positions and stability. Invest Ophthalmol Vis Sci. 2006;47:188–94. doi:10.1167/iovs.05-0498.
  • Suh SY, Le A, Clark RA, Demer JL. Rectus pulley displacements without abnormal oblique contractility explain strabismus in superior oblique palsy. Ophthalmology. 2016;123:1222–31. doi:10.1016/j.ophtha.2016.02.016.
  • Demer JL, Clark RA. Translation and eccentric rotation in ocular motor modeling. In: Ramat S, Shaikh AG, editors. Mathematical modeling in motor neuroscience: State of the art and translation to the clinic. Ocular motor plant and gaze stabilization mechanisms. Cambridge (MA): Elsevier; 2019. p. 117–26.
  • Huang J, Huang JY, Chen Y, Ying GS. Evaluation of approaches to analyzing continuous correlated eye data when sample size is small. Ophthalmic Epidemiol. 2018;25:45–54. doi:10.1080/09286586.2017.1339809.
  • Verkicharla PK, Chia NE, Saw SM. What public policies should be developed to cope with the myopia epidemic? Optom Vis Sci. 2016;93:1055–57. doi:10.1097/OPX.0000000000000982.
  • Pan CW, Dirani M, Cheng CY, Wong T-Y, Saw S-M. The age-specific prevalence of myopia in Asia: A meta-analysis. Optom Vis Sci. 2015;92:258–66. doi:10.1097/OPX.0000000000000516.
  • Basmak H, Sahin A, Yildirim N, Saricicek T, Yurdakul S. The angle kappa in strabismic individuals. Strabismus. 2007;15:193–96. doi:10.1080/09273970701631926.
  • Gharaee H, Shafiee M, Hoseini R, Alvandi A, Abdian N, Aryan E, Soleimani N, Gholipour A. Angle kappa measurements: Normal values in healthy Iranian population obtained with the Orbscan II. Iran Red Crescent Med J. 2015;17:e17873. doi:10.5812/ircmj.23191v2.
  • Friedman B. Mechanics of optic nerve traction on the retina during ocular rotation with special reference to retinal detachment. Arch Ophthalmol. 1941;25:564–75. doi:10.1001/archopht.1941.00870100042005.
  • Suh SY, Clark RA, Demer JL. Optic nerve sheath tethering in adduction occurs in esotropia and hypertropia, but not in exotropia. Invest Ophthalmol Vis Sci. 2018;59:2899–904. doi:10.1167/iovs.18-24305.
  • von Helmholtz H. Helmholtz’s treatise on physiological optics, translated from the third german edition. Rochester (NY): The Optical Society of America; 1924.
  • Enoch JM, Choi SS, Kono M, Schwartz D, Bearse M. Utilization of eye-movement phosphenes to help understand transient strains at the optic disc and nerve in myopia. Ophth Physiol Opt. 2003;23:377–81. doi:10.1046/j.1475-1313.2003.00120.x.
  • Le A, Lesgart M, Gawargious BA, Suh SY, Demer JL. Horizontal duction causes age dependent deformation of the optic nerve head and peripapillary retina. ARVO Abstracts. 2019;abstract 6173.
  • Guitton D, Volle M. Gaze control in humans: eye-head coordination during orienting movements to targets within and beyond the oculomotor range. J Neurophysiol. 1987;58:427–59. doi:10.1152/jn.1987.58.3.427.
  • Epelboim J, Steinman RM, Kowler E, Pizlo Z, Erkelens CJ, Collewijn H. Gaze-shift dynamics in two kinds of sequential looking tasks. Vision Res. 1997;37:2597–607. doi:10.1016/s0042-6989(97)00075-8.
  • Wu CC, Kowler E. Timing of saccadic eye movements during visual search for multiple targets. J Vis. 2013 Sep 18;13. doi: 10.1167/13.11.11.
  • Robinson DA. Control of eye movements. In: Brooks VB editor. The nervous system, handbook of physiology. Vol. II. Baltimore (MD): Williams & Wilkins; 1981. p. 1275–320.
  • Leclair-Visonneau L, Oudiette D, Gaymard B, Leu-Semenescu S, Arnulf I. Do the eyes scan dream images during rapid eye movement sleep? Evidence from the rapid eye movement sleep behaviour disorder model. Brain. 2010;133:1737–46. doi:10.1093/brain/awq110.
  • Anastasopoulos D, Ziavra N, Hollands M, Bronstein A. Gaze displacement and inter-segmental coordination during large whole body voluntary rotations. Exp Brain Res. 2009;193:323–36. doi:10.1007/s00221-008-1627-y.
  • Tomlinson RD, Bahra PS. Combined eye-head gaze shifts in the primate. II. Interaction between saccades and the vestibuloocular reflex. J Neurophysiol. 1986;56:1558–70. doi:10.1152/jn.1986.56.6.1558.
  • Tomlinson RD, Bahra PS. Combined eye-head gaze shifts in the primate. I. Metrics. J Neurophysiol. 1986;56:1542–57. doi:10.1152/jn.1986.56.6.1542.
  • Leung CK, Ye C, Weinreb RN, Yu M, Lai G, Lam DS. Impact of age-related change of retinal nerve fiber layer and macular thicknesses on evaluation of glaucoma progression. Ophthalmology. 2013;120:2485–92. doi:10.1016/j.ophtha.2013.07.021.
  • Caprioli J, Zeyen T. A critical discussion of the rates of progression and causes of optic nerve damage in glaucoma. J Glaucoma. 2009;18:S1–21. doi:10.1097/IJG.0b013e3181aff461.
  • Pekmezci M, Vo B, Lim AK, Hirabayashi DR, Tanaka GH, Weinreb RN, Lin SC. The characteristics of glaucoma in Japanese Americans. Arch Ophthalmol. 2009;127:167–71. doi:10.1001/archophthalmol.2008.593.
  • Park J, Giaconi JA, Nouri-Mahdavi K, Law SK, Bonelli L, Coleman AL, Caprioli J, and Demer JL. Finite element analysis (FEA) of anatomical factors exaggerating optic nerve (ON) strain during adduction tethering in primary open angle glaucoma (POAG) without elevated intraocular pressure (IOP). In: Association for Research in Vision and Ophthalmology. Rockville (MD); 2019. p. 6172.
  • Shim SH, Sung KR, Kim JM, Kim HT, Jeong J, Kim CY, Lee MY, Park KH. The prevalence of open-angle glaucoma by age in myopia: The Korea national health and nutrition examination survey. Curr Eye Res. 2017;42:65–71. doi:10.3109/02713683.2016.1151053.
  • Doucette LP, Rasnitsyn A, Seifi M, Walter MA. The interactions of genes, age, and environment in glaucoma pathogenesis. Surv Ophthalmol. 2015;60:310–26. doi:10.1016/j.survophthal.2015.01.004.
  • Rabinowitz MP, Katz LJ, Moster MR, Myers JS, Pro MJ, Spaeth GL, Sharma P, Stefanyszyn MA. Unilateral prostaglandin-associated periorbitopathy: A syndrome involving ipper eyelid retraction distinguishable from the aging sunken eyelid. Ophthal Plast Reconstr Surg. 2015;31:373–78. doi:10.1097/IOP.0000000000000351.
  • Park J, Cho HK, Moon JI. Changes to upper eyelid orbital fat from use of topical bimatoprost, travoprost, and latanoprost. Jpn J Ophthalmol. 2011;55:22–27. doi:10.1007/s10384-010-0904-z.
  • Filippopoulos T, Paula JS, Torun N, Hatton MP, Pasquale LR, Grosskreutz CL. Periorbital changes associated with topical bimatoprost. Ophthal Plast Reconstr Surg. 2008;24:302–07. doi:10.1097/IOP.0b013e31817d81df.
  • Jayaprakasam A, Ghazi-Nouri S. Periorbital fat atrophy - An unfamiliar side effect of prostaglandin analogues. Orbit. 2010;29:357–59. doi:10.3109/01676830.2010.527028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.