190
Views
23
CrossRef citations to date
0
Altmetric
Lens

Formation of cholesterol Bilayer Domains Precedes Formation of Cholesterol Crystals in Membranes Made of the Major Phospholipids of Human Eye Lens Fiber Cell Plasma Membranes

, ORCID Icon &
Pages 162-172 | Received 15 Jul 2019, Accepted 27 Aug 2019, Published online: 03 Sep 2019

References

  • Huang L, Grami V, Marrero Y, Tang D, Yappert MC, Rasi V, Borchman D. Human lens phospholipid changes with age and cataract. Invest Ophthalmol Vis Sci. 2005;46:1682–89. doi:10.1167/iovs.04-1155.
  • Paterson CA, Zeng J, Husseini Z, Borchman D, Delamere NA, Garland D, Jimenez-Asensio J. Calcium ATPase activity and membrane structure in clear and cataractous human lenses. Curr Eye Res. 1997;16:333–38.
  • Truscott RJ. Age-related nuclear cataract: a lens transport problem. Ophthalmic Res. 2000;32:185–94. doi:10.1159/000055612.
  • Yappert MC, Rujoi M, Borchman D, Vorobyov I, Estrada R. Glycero- versus sphingo-phospholipids: correlations with human and non-human mammalian lens growth. Exp Eye Res. 2003;76:725–34. doi:10.1016/s0014-4835(03)00051-4.
  • Hughes JR, Deeley JM, Blanksby SJ, Leisch F, Ellis SR, Truscott RJ, Mitchell TW. Instability of the cellular lipidome with age. Age. 2012;34:935–47. doi:10.1007/s11357-011-9293-6.
  • Li LK, So L, Spector A. Membrane cholesterol and phospholipid in consecutive concentric sections of human lenses. J Lipid Res. 1985;26:600–09.
  • Li LK, So L, Spector A. Age-dependent changes in the distribution and concentration of human lens cholesterol and phospholipids. Biochim Biophys Acta. 1987;917:112–20. doi:10.1016/0005-2760(87)90291-8.
  • Rujoi M, Jin J, Borchman D, Tang D, Yappert MC. Isolation and lipid characterization of cholesterol-enriched fractions in cortical and nuclear human lens fibers. Invest Ophthalmol Vis Sci. 2003;44:1634–42. doi:10.1167/iovs.02-0786.
  • Zelenka PS. Lens lipids. Curr Eye Res. 1984;3:1337–59.
  • Lynnerup N, Kjeldsen H, Heegaard S, Jacobsen C, Heinemeier J. Radiocarbon dating of the human eye lens crystallines reveal proteins without carbon turnover throughout life. PLoS One. 2008;3:e1529. doi:10.1371/journal.pone.0001529.
  • Stewart DN, Lango J, Nambiar KP, Falso MJ, FitzGerald PG, Rocke DM, Hammock BD, Buchholz BA. Carbon turnover in the water-soluble protein of the adult human lens. Mol Vis. 2013;19:463–75.
  • Epand RM. Role of membrane lipids in modulating the activity of membrane-bound enzymes. In: Yeagle PL, editor. The structure of biological membrane. Boca Raton (FL): CRC Press; 2005. p. 499–509.
  • Reichow SL, Gonen T. Lipid-protein interactions probed by electron crystallography. Curr Opin Struct Biol. 2009;19:560–65. doi:10.1016/j.sbi.2009.07.012.
  • Tong J, Briggs Margaret M, McIntosh Thomas J. Water permeability of aquaporin-4 channel depends on bilayer composition, thickness, and elasticity. Biophys J. 2012;103:1899–908. doi:10.1016/j.bpj.2012.09.025.
  • Tong J, Canty JT, Briggs MM, McIntosh TJ. The water permeability of lens aquaporin-0 depends on its lipid bilayer environment. Exp Eye Res. 2013;113:32–40. doi:10.1016/j.exer.2013.04.022.
  • Mainali L, Raguz M, O’Brien WJ, Subczynski WK. Changes in the properties and organization of human lens lipid membranes occurring with age. Curr Eye Res. 2017;42:721–31. doi:10.1080/02713683.2016.1231325.
  • Subczynski WK, Raguz M, Widomska J, Mainali L, Konovalov A. Functions of cholesterol and the cholesterol bilayer domain specific to the fiber-cell plasma membrane of the eye lens. J Membr Biol. 2012;245:51–68. doi:10.1007/s00232-011-9412-4.
  • Subczynski WK, Mainali L, Raguz M, O’Brien WJ. Organization of lipids in fiber-cell plasma membranes of the eye lens. Exp Eye Res. 2017;156:79–86. doi:10.1016/j.exer.2016.03.004.
  • Jacob RF, Cenedella RJ, Mason RP. Direct evidence for immiscible cholesterol domains in human ocular lens fiber cell plasma membranes. J Biol Chem. 1999;274:31613–18. doi:10.1074/jbc.274.44.31613.
  • Huang J, Buboltz JT, Feigenson GW. Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers. Biochim Biophys Acta. 1999;1417:89–100. doi:10.1016/s0005-2736(98)00260-0.
  • Mainali L, Raguz M, Subczynski WK. Formation of cholesterol bilayer domains precedes formation of cholesterol crystals in cholesterol/dimyristoylphosphatidylcholine membranes: EPR and DSC studies. J Phys Chem B. 2013;117:8994–9003. doi:10.1021/jp402394m.
  • Ziblat R, Leiserowitz L, Addadi L. Crystalline domain structure and cholesterol crystal nucleation in single hydrated DPPC: cholesterol:POPCbilayers. J Am Chem Soc. 2010;132:9920–27. doi:10.1021/ja103975g.
  • Epand RM. Cholesterol in bilayers of sphingomyelin or dihydrosphingomyelin at concentrations found in ocular lens membranes. Biophys J. 2003;84:3102–10. doi:10.1016/S0006-3495(03)70035-6.
  • Epand RM, Bain AD, Sayer BG, Bach D, Wachtel E. Properties of mixtures of cholesterol with phosphatidylcholine or with phosphatidylserine studied by (13)C magic angle spinning nuclear magnetic resonance. Biophys J. 2002;83:2053–63. doi:10.1016/S0006-3495(02)73966-0.
  • Benatti CR, Lamy MT, Epand RM. Cationic amphiphiles and the solubilization of cholesterol crystallites in membrane bilayers. Biochim Biophys Acta. 2008;1778:844–53. doi:10.1016/j.bbamem.2007.12.011.
  • Bach D, Wachtel E, Borochov N, Senisterra G, Epand RM. Phase behaviour of heteroacid phosphatidylserines and cholesterol. Chem Phys Lipids. 1992;63:105–13. doi:10.1016/0009-3084(92)90027-M.
  • Garg S, Castro-Roman F, Porcar L, Butler P, Bautista PJ, Krzyzanowski N, Perez-Salas U. Cholesterol solubility limit in lipid membranes probed by small angle neutron scattering and MD simulations. Soft Matter. 2014;10:9313–17. doi:10.1039/c4sm01219d.
  • Deeley JM, Mitchell TW, Wei X, Korth J, Nealon JR, Blanksby SJ, Truscott RJ. Human lens lipids differ markedly from those of commonly used experimental animals. Biochim Biophys Acta. 2008;1781:288–98. doi:10.1016/j.bbalip.2008.04.002.
  • Buboltz JT, Feigenson GW. A novel strategy for the preparation of liposomes: rapid solvent exchange. Biochim Biophys Acta. 1999;1417:232–45. doi:10.1016/s0005-2736(99)00006-1.
  • Buboltz JT. A more efficient device for preparing model-membrane liposomes by the rapid solvent exchange method. Rev Sci Instrum. 2009;80:124301. doi:10.1063/1.3264073.
  • Yin JJ, Feix JB, Hyde JS. Mapping of collision frequencies for stearic acid spin labels by saturation-recovery electron paramagnetic resonance. Biophys J. 1990;58:713–20. doi:10.1016/S0006-3495(90)82414-0.
  • Yin JJ, Pasenkiewicz-Gierula M, Hyde JS. Lateral diffusion of lipids in membranes by pulse saturation recovery electron spin resonance. Proc Natl Acad Sci U S A. 1987;84:964–68. doi:10.1073/pnas.84.4.964.
  • Mainali L, Camenisch TG, Hyde JS, Subczynski WK. Saturation recovery EPR spin-labeling method for quantification of lipids in biological membrane domains. Appl Magn Reson. 2017;48:1355–73.
  • Hyde JS. Saturation recovery. In: Eaton GR, Eaton SS, Salikhov KM, editors. Foundations of Modern EPR. Singapore: World Scientific; 1998. p. 607–18.
  • Subczynski WK, Felix CC, Klug CS, Hyde JS. Concentration by centrifugation for gas exchange EPR oximetry measurements with loop-gap resonators. J Magn Reson. 2005;176:244–48. doi:10.1016/j.jmr.2005.06.011.
  • Raguz M, Mainali L, Widomska J, Subczynski WK. Using spin-label electron paramagnetic resonance (EPR) to discriminate and characterize the cholesterol bilayer domain. Chem Phys Lipids. 2011;164:819–29. doi:10.1016/j.chemphyslip.2011.08.001.
  • Subczynski WK, Raguz M, Widomska J. Studying lipid organization in biological membranes using liposomes and EPR spin labeling. Methods Mol Biol. 2010;606:247–69. doi:10.1007/978-1-60761-447-0_18.
  • Plesnar E, Szczelina R, Subczynski WK, Pasenkiewicz-Gierula M. Is the cholesterol bilayer domain a barrier to oxygen transport into the eye lens? Biochim Biophys Acta. 2018;1860:434–41. doi:10.1016/j.bbamem.2017.10.020.
  • Loomis CR, Shipley GG, Small DM. The phase behavior of hydrated cholesterol. J Lipid Res. 1979;20:525–35.
  • Epand RM, Hughes DW, Sayer BG, Borochov N, Bach D, Wachtel E. Novel properties of cholesterol-dioleoylphosphatidylcholine mixtures. Biochim Biophys Acta. 2003;1616:196–208. doi:10.1016/j.bbamem.2003.08.006.
  • Paré C, Lafleur M. Polymorphism of POPE/cholesterol system: A 2H nuclear magnetic resonance and infrared spectroscopic investigation. Biophys J. 1998;74:899–909. doi:10.1016/S0006-3495(98)74013-5.
  • Mainali L, Raguz M, O’Brien WJ, Subczynski WK. Properties of membranes derived from the total lipids extracted from the human lens cortex and nucleus. Biochim Biophys Acta. 2013;1828:1432–40. doi:10.1016/j.bbamem.2013.02.006.
  • Mainali L, Raguz M, O’Brien WJ, Subczynski WK. Properties of membranes derived from the total lipids extracted from clear and cataractous lenses of 61–70-year-old human donors. Eur Biophys J. 2015;44:91–102. doi:10.1007/s00249-014-1004-7.
  • Rog T, Pasenkiewicz-Gierula M. Cholesterol-sphingomyelin interactions: a molecular dynamics simulation study. Biophys J. 2006;91:3756–67. doi:10.1529/biophysj.106.080887.
  • Suits B, Pitman MC, Feller SE. Molecular dynamics investigation of the structural properties of phosphatidylethanolamine lipid bilayers. J Chem Phys. 2005;122:244714. doi:10.1063/1.1899152.
  • Heberle FA, Feigenson GW. Phase separation in lipid membranes. Cold Spring Harb Perspect Biol. 2011;3:1–13. doi:10.1101/cshperspect.a004630.
  • Simons K, Vaz WL. Model systems, lipid rafts, and cell membranes. Rev Biophys Biomol Struct. 2004;33:269–95. doi:10.1146/annurev.biophys.32.110601.141803.
  • Jacob RF, Mason RP. Lipid peroxidation induces cholesterol domain formation in model membranes. J Biol Chem. 2005;280:39380–87. doi:10.1074/jbc.M507587200.
  • Jacob RF, Aleo MD, Self-Medlin Y, Doshna CM, Mason RP. 1,2-naphthoquinone stimulates lipid peroxidation and cholesterol domain formation in model membranes. Invest Ophthalmol Vis Sci. 2013;54:7189–97. doi:10.1167/iovs.13-12793.
  • Mainali L, Zareba M, Subczynski WK. Oxidation of polyunsaturated phospholipid decreases the cholesterol content at which cholesterol bilayer domains start to form in phospholipid-cholesterol membranes. Biophys J. 2017;112:375a. doi:10.1016/j.bpj.2016.11.2037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.