329
Views
17
CrossRef citations to date
0
Altmetric
Cornea, Limbus & Ocular Surface

Alteration of Tear Cytokine Expressions in Primary Acquired Nasolacrimal Duct Obstruction – Potential Insights into the Etiopathogenesis

, , , &
Pages 435-439 | Received 01 May 2019, Accepted 02 Sep 2019, Published online: 04 Oct 2019

References

  • Das AV, Rath S, Naik MN, Ali MJ. The incidence of lacrimal drainage disorders across a tertiary eye care network: customization of an indigenously developed electronic medical record system – eyeSmart. Ophthalmic Plast Reconstr Surg. 2019;35:354–56. (Epub).
  • Kamal S, Ali MJ. Primary acquired nasolacrimal duct obstruction (PANDO) and secondary acquired lacrimal duct obstruction (SALDO). In: Ali MJ editor. Principles and practice of lacrimal surgery. 2nd. Singapore: Springer; 2018. p. 163–71.
  • Ali MJ, Paulsen F. Etiopathogenesis of primary acquired nasolacrimal duct obstruction: what we know and what we need to know. Ophthalmic Plast Reconstr Surg. 2019:1. (Epub). doi:10.1097/IOP.0000000000001310.
  • Lee SM, Chung SJ, Lew H. Evaluation of tear film lipid layer thickness measurements obtained using an ocular surface interferometer in nasolacrimal duct obstruction patients. Korean J Ophthalmol. 2018;32:445–50. doi:10.3341/kjo.2018.0012.
  • Yazici A, Bulbul E, Yazici H, Sari E, Tiskaoglu N, Yanik B, Ermis S. Lacrimal gland volume changes in unilateral primary acquired nasolacrimal obstruction. Invest Ophthalmol Vis Sci. 2015;56:4425–29. doi:10.1167/iovs.15-16873.
  • Ohtomo K, Ueta T, Fukuda R, Usui T, Miyai T, Shirakawa R, Amano S, Nagahara M. Tear meniscus volume changes in dacryocystorhinostomy evaluated with quantitative measurement using anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55:2057–61. doi:10.1167/iovs.13-12692.
  • Yuksel N, Akcay E, Ayan B, Duru N. Tear-film osmolarity changes following dacryocystorhinostomy in primary acquired nasolacrimal duct obstruction. Curr Eye Res. 2017;42:348–50. doi:10.1080/02713683.2016.1196706.
  • Lee JK, Kim TH. Changes in cytokines in tears after endoscopic endonasal dacryocystorhinostomy for primary acquired nasolacrimal duct obstruction. Eye. 2014;28:600–07. doi:10.1038/eye.2014.33.
  • Paulsen FP, Thale AB, Maune S, Tillmann BN. New insights into the pathophysiology of primary acquired dacryostenosis. Ophthalmology. 2001;108:2329–36. doi:10.1016/s0161-6420(01)00946-0.
  • Ali MJ, Shicht M, Paulsen F. Qualitative hormonal profiling of the lacrimal drainage system: potential insights into the etiopathogenesis of primary acquired nasolacrimal duct obstruction. Ophthalmic Plast Reconstr Surg. 2017;33:381–88. doi:10.1097/IOP.0000000000000962.
  • Ali MJ, Venugopal A, Ranganath KS, Jagannadham MV, Nadimpalli SK. Soluble glycoproteins of the lacrimal sac: role in defense with special reference to prolactin-inducible protein. Orbit. 2019;38:279–84. (Epub).
  • Ali MJ, Heichel J, Paulsen F. Immunohistochemical analysis of lacrimal sac mucopeptide concretions. Ophthalmic Plast Reconstr Surg. 2019:1. (Epub). doi:10.1097/IOP.0000000000001375.
  • Ali MJ, Paulsen F. Prolactin and prolactin-inducible protein (PIP) in the pathogenesis of primary acquired nasolacrimal duct obstruction (PANDO). Med Hypothesis. 2019;125:137–38. doi:10.1016/j.mehy.2019.02.051.
  • Rathi S, Jalali S, Patnaik S, Shahulhameed S, Musada GR, Balakrishnan D, Rani PK, Kekunnaya R, Chhablani PP, Swain S, et al. Abnormal complement activation and inflammation in the pathogenesis of retinopathy of prematurity. Front Immunol. 2017;8:1868. doi:10.3389/fimmu.2017.01868.
  • Mastorakos G, Chrousos GP, Weber JS. Recombinant interleukin-6 activates the hypothalamic-pituitary-adrenal axis in humans. J Clin Endocrinol Metab. 1993;77:1690–94.
  • Farjo KM, Farjo RA, Halsey S, Moiseyev G, Ma JX. Retinol-binding protein 4 induces inflammation in human endothelial cells by NADPH-oxidase and nuclear factor kappa B-dependent and retinol independent mechanisms. Mol Cell Biol. 2012;32:5103–15. doi:10.1128/MCB.00820-12.
  • Norseen J, Hosooka T, Hammarstedt A, Yore MM, Kant S, Aryal P, Kiernan UA, Phillips DA, Maruyama H, Kraus BJ, et al. Retinol-binding protein 4 inhibits insulin signaling in adipocytes by inducing proinflammatory cytokines in macrophages through a c-Jun N-terminal kinase- and toll-like receptor 4-dependent and retinol-independent mechanism. Mol Cell Biol. 2012;32:2010–19. doi:10.1128/MCB.06193-11.
  • Liu Y, Zhang Z, Jin Q, Liu Y, Kang Z, Huo Y, He Z, Feng X, Yin J, Wu X, et al. Hyperprolactinemia is associated with a high prevalence of serum autoantibodies, high levels of inflammatory cytokines and an abnormal distribution of peripheral B-cell subsets. Endocrine. 2019;64:648–56. doi:10.1007/s12020-019-01896-y.
  • Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol. 2009;78:539–52. doi:10.1016/j.bcp.2009.04.029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.