301
Views
6
CrossRef citations to date
0
Altmetric
Lens

A Novel Mutation p.S93R in CRYBB1 Associated with Dominant Congenital Cataract and Microphthalmia

, , , , ORCID Icon &
Pages 483-489 | Received 14 May 2019, Accepted 16 Sep 2019, Published online: 15 Oct 2019

References

  • Bassnett S, Šikić H. The lens growth process. Prog Retin Eye Res. 2017;60:181–200. doi:10.1016/j.preteyeres.2017.04.001.
  • McAvoy JW, Dawes LJ, Sugiyama Y, Lovicu FJ. Intrinsic and extrinsic regulatory mechanisms are required to form and maintain a lens of the correct size and shape. Exp Eye Res. 2017;156:34–40. doi:10.1016/j.exer.2016.04.009.
  • Shiels A, Hejtmancik JF. Mutations and mechanisms in congenital and age-related cataracts. Exp Eye Res. 2017;156:95–102. doi:10.1016/j.exer.2016.06.011.
  • Zhu X, Zhang S, Chang R, Lu Y. New cataract markers: mechanisms of disease. Clin Chim Acta. 2017;472:41–45. doi:10.1016/j.cca.2017.07.010.
  • Liu Y-C, Wilkins M, Kim T, Malyugin B, Mehta JS. Cataracts. Lancet. 2017;390(10094):600–12. doi:10.1016/S0140-6736(17)30544-5.
  • Wu X, Long E, Lin H, Liu Y. Prevalence and epidemiological characteristics of congenital cataract: a systematic review and meta-analysis. Sci Rep. 2016;6:28564. doi:10.1038/srep28564.
  • Reis LM, Semina EV. Genetic landscape of isolated pediatric cataracts: extreme heterogeneity and variable inheritance patterns within genes. Hum Genet. 2019;138(8-9):847–63.
  • Shiels A, Bennett TM, Hejtmancik JF. Cat-Map: putting cataract on the map. Mol Vis. 2010;16:2007–15.
  • Graw J. Genetics of crystallins: cataract and beyond. Exp Eye Res. 2009;88(2):173–89. doi:10.1016/j.exer.2008.10.011.
  • Wistow GJ, Piatigorsky J. Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Ann Rev Biochem. 1988;57(1):479–504. doi:10.1146/annurev.bi.57.070188.002403.
  • Andley UP. Crystallins in the eye: function and pathology. Prog Retin Eye Res. 2007;26(1):78–98. doi:10.1016/j.preteyeres.2006.10.003.
  • Anbarasu K, Sivakumar J. Multidimensional significance of crystallin protein–protein interactions and their implications in various human diseases. Biochim Biophy Acta (BBA) - Gen Sub. 2016;1860(1, Part B):222–33. doi:10.1016/j.bbagen.2015.09.005.
  • Lampi KJ, Wilmarth PA, Murray MR, David LL. Lens β-crystallins: the role of deamidation and related modifications in aging and cataract. Prog Biophy & Mol Biol. 2014;115(1):21–31. doi:10.1016/j.pbiomolbio.2014.02.004.
  • Bloemendal H, de Jong W, Jaenicke R, Lubsen NH, Slingsby C, Tardieu A. Ageing and vision: structure, stability and function of lens crystallins. Prog Biophy & Mol Biol. 2004;86(3):407–85. doi:10.1016/j.pbiomolbio.2003.11.012.
  • Vendra VPR, Khan I, Chandani S, Muniyandi A, Balasubramanian D. Gamma crystallins of the human eye lens. Biochim Biophy Acta (BBA) - Gen Sub. 2016;1860(1, Part B):333–43. doi:10.1016/j.bbagen.2015.06.007.
  • Lampi KJ, Ma Z, Shih M, Shearer TR, Smith JB, Smith DL, David LL. Sequence analysis of βA3, βB3, and βA4 crystallins completes the identification of the major proteins in young human lens. J Biol Chem. 1997;272(4):2268–75. doi:10.1074/jbc.272.4.2268.
  • Mackay DS, Boskovska OB, Knopf HL, Lampi KJ, Shiels A. A nonsense mutation in CRYBB1 associated with autosomal dominant cataract linked to human chromosome 22q. Am J Hum Genet. 2002;71(5):1216–21. doi:10.1086/344212.
  • Willoughby CE, Shafiq A, Ferrini W, Chan LL, Billingsley G, Priston M, Mok C, Chandna A, Kaye S, Heon E. CRYBB1 mutation associated with congenital cataract and microcornea. Mol Vis. 2005;11:587–93.
  • Cohen D, Bar-Yosef U, Levy J, Gradstein L, Belfair N, Ofir R, Joshua S, Lifshitz T, Carmi R, Birk OS. Homozygous CRYBB1 deletion mutation underlies autosomal recessive congenital cataract. Inv Ophthal Vis Sci. 2007;48(5):2208–13. doi:10.1167/iovs.06-1019.
  • Yang J, Zhu Y, Gu F, He X, Cao Z, Li X, Tong Y, Ma X. A novel nonsense mutation in CRYBB1 associated with autosomal dominant congenital cataract. Mol Vis. 2008;14:727–31.
  • Meyer E, Rahman F, Owens J, Pasha S, Morgan NV, Trembath RC, Stone EM, Moore AT, Maher ER. Initiation codon mutation in betaB1-crystallin (CRYBB1) associated with autosomal recessive nuclear pulverulent cataract. Mol Vis. 2009;15:1014–19.
  • Xi Y-B, Zhao W-J, Zuo X-T, Tjondro HC, Li J, Dai A-B, Wang S, Yan Y-B. Cataract-causing mutation R233H affects the stabilities of βB1- and βA3/βB1-crystallins with different pH-dependence. Biochim Biophy Acta (BBA) - Mol Basis of Dis. 2014;1842(11):2216–29. doi:10.1016/j.bbadis.2014.07.022.
  • Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74. doi:10.1038/nature15393.
  • Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O’Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285. doi:10.1038/nature19057.
  • Khan AO, Aldahmesh MA, Mohamed JY, Alkuraya FS. Clinical and molecular analysis of children with central pulverulent cataract from the Arabian Peninsula. Br J Ophthalmol. 2012;96(5):650–55. doi:10.1136/bjophthalmol-2011-301053.
  • Reis LM, Tyler RC, Muheisen S, Raggio V, Salviati L, Han DP, Costakos D, Yonath H, Hall S, Power P, et al. Whole exome sequencing in dominant cataract identifies a new causative factor, CRYBA2, and a variety of novel alleles in known genes. Hum Genet. 2013;132(7):761–70. doi:10.1007/s00439-013-1289-0.
  • Chen P, Chen H, Pan XJ, Tang SZ, Xia YJ, Zhang H. Novel mutations in CRYBB1/CRYBB2 identified by targeted exome sequencing in Chinese families with congenital cataract. Int J Ophthalmol. 2018;11(10):1577–82. doi:10.18240/ijo.2018.10.01.
  • Ma AS, Grigg JR, Ho G, Prokudin I, Farnsworth E, Holman K, Cheng A, Billson FA, Martin F, Fraser C, et al.. Sporadic and familial congenital cataracts: mutational spectrum and new diagnoses using next-generation sequencing. Hum Mutat. 2016;37(4):371–84. doi:10.1002/humu.22948.
  • Wu Q, Shi H, Liu N, Lu N, Jiang M, Zhao Z, Kong X. Mutation analysis of CRYBB1 gene and prenatal diagnosis for a Chinese kindred featuring autosomal dominant congenital nuclear cataract. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2013;30(3):266–69. doi:10.3760/cma.j.issn.1003-9406.2013.03.003.
  • Wang S, Zhao W-J, Liu H, Gong H, Yan Y-B. Increasing βB1-crystallin sensitivity to proteolysis caused by the congenital cataract-microcornea syndrome mutation S129R. Biochim Biophy Acta (BBA) - Mol Basis of Dis. 2013;1832(2):302–11. doi:10.1016/j.bbadis.2012.11.005.
  • Wang KJ, Wang S, Cao NQ, Yan YB, Zhu SQ. A novel mutation in CRYBB1 associated with congenital cataract-microcornea syndrome: the p.Ser129Arg mutation destabilizes the betaB1/betaA3-crystallin heteromer but not the betaB1-crystallin homomer. Hum Mutat. 2011;32(3):E2050–60. doi:10.1002/humu.21436.
  • Siggs OM, Javadiyan S, Sharma S, Souzeau E, Lower KM, Taranath DA, Black J, Pater J, Willoughby JG, Burdon KP, et al. Partial duplication of the CRYBB1-CRYBA4 locus is associated with autosomal dominant congenital cataract. Eur J Hum Genet. 2017;25(6):711–18. doi:10.1038/ejhg.2017.33.
  • Rao Y, Dong S, Li Z, Yang G, Peng C, Yan M, Zheng F. A novel truncation mutation in CRYBB1 associated with autosomal dominant congenital cataract with nystagmus. Mol Vis. 2017;23:624–37.
  • Qi L-B, Hu L-D, Liu H, Li H-Y, Leng X-Y, Yan Y-B. Cataract-causing mutation S228P promotes βB1-crystallin aggregation and degradation by separating two interacting loops in C-terminal domain. Prot Cell. 2016;7(7):501–15. doi:10.1007/s13238-016-0284-3.
  • Wang J, Ma X, Gu F, Liu NP, Hao XL, Wang KJ, Wang NL, Zhu SQ. A missense mutation S228P in the CRYBB1 gene causes autosomal dominant congenital cataract. Chin Med J (Engl). 2007;120:820–24.
  • Sun Z, Zhou Q, Li H, Yang L, Wu S, Sui R. Mutations in crystallin genes result in congenital cataract associated with other ocular abnormalities. Mol Vis. 2017;23:977–86.
  • Wang KJ, Wang BB, Zhang F, Zhao Y, Ma X, Zhu SQ. Novel beta-crystallin gene mutations in Chinese families with nuclear cataracts. Arch Ophthalmol. 2011;129(3):337–43. doi:10.1001/archophthalmol.2011.11.
  • Leng XY, Li HY, Wang J, Qi LB, Xi YB, Yan YB. Congenital microcornea-cataract syndrome-causing mutation X253R increases betaB1-crystallin hydrophobicity to promote aggregate formation. Biochem J. 2016;473(14):2087–96. doi:10.1042/BCJ20160247.
  • Blundell T, Lindley P, Miller L, Moss D, Slingsby C, Tickle I, Turnell B, Wistow G. The molecular structure and stability of the eye lens: x-ray analysis of gamma-crystallin II. Nature. 1981;289(5800):771–77. doi:10.1038/289771a0.
  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server. Walker JM, editor. Totowa, NJ: Humana Press; 2005.
  • Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER suite: protein structure and function prediction. Nat Meth. 2015;12(1):7–8. doi:10.1038/nmeth.3213.
  • Krieger E, Vriend G. New ways to boost molecular dynamics simulations. J Comput Chem. 2015;36(13):996–1007. doi:10.1002/jcc.23899.
  • Bateman OA, Sarra R, van Genesen ST, Kappé G, Lubsen NH, Slingsby C. The stability of human acidic β-crystallin oligomers and hetero-oligomers. Exp Eye Res. 2003;77(4):409–22. doi:10.1016/s0014-4835(03)00173-8.
  • Wang S, Leng X-Y, Yan Y-B. The benefits of being β-crystallin heteromers: βB1-crystallin protects βA3-crystallin against aggregation during co-refolding. Biochem. 2011;50(48):10451–61. doi:10.1021/bi201375p.
  • Moreau KL, King JA. Protein misfolding and aggregation in cataract disease and prospects for prevention. Trends Mol Med. 2012;18(5):273–82. doi:10.1016/j.molmed.2012.03.005.
  • Leng X-Y, Wang S, Cao N-Q, Qi L-B, Yan Y-B. The N-terminal extension of βB1-crystallin chaperones β-crystallin folding and cooperates with αA-crystallin. Biochem. 2014;53(15):2464–73. doi:10.1021/bi500146d.
  • Zhang K, Zhao W-J, Leng X-Y, Wang S, Yao K, Yan Y-B. The importance of the last strand at the C-terminus in βB2-crystallin stability and assembly. Biochim Biophy Acta (BBA) - Mol Basis Dis. 2014;1842(1):44–55. doi:10.1016/j.bbadis.2013.10.001.
  • Biro J. Amino acid size, charge, hydropathy indices and matrices for protein structure analysis. Theo Biol Med Mod. 2006;3(1):15. doi:10.1186/1742-4682-3-15.
  • Zhao L, Chen X-J, Zhu J, Xi Y-B, Yang X, Hu L-D, Ouyang H, Patel SH, Jin X, Lin D, et al. Lanosterol reverses protein aggregation in cataracts. Nature. 2015;523:607. doi:10.1038/nature14650.
  • Lin H, Ouyang H, Zhu J, Huang S, Liu Z, Chen S, Cao G, Li G, Signer RAJ, Xu Y, et al. Lens regeneration using endogenous stem cells with gain of visual function. Nature. 2016;531:323. doi:10.1038/nature17181.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.