267
Views
8
CrossRef citations to date
0
Altmetric
Cornea & Conjunctiva

MiRNA-155-5p Reduces Corneal Epithelial Permeability by Remodeling Epithelial Tight Junctions during Corneal Wound Healing

, , , , &
Pages 904-913 | Received 21 Sep 2019, Accepted 17 Dec 2019, Published online: 07 Jan 2020

References

  • Ljubimov AV, Saghizadeh M. Progress in corneal wound healing. Prog Retin Eye Res. 2015;49:17–45. doi:10.1016/j.preteyeres.2015.07.002.
  • Chua D, Htoon HM, Lim L, Chan CM, Mehta JS, Tan DTH, Rosman M. Eighteen-year prospective audit of LASIK outcomes for myopia in 53731 eyes. Br J Ophthalmol. 2019 Sep;103(9):1228–34. doi:10.1136/bjophthalmol-2018-312587.
  • Yan H. Problems and countermeasures of ocular trauma emergency management in China. Zhonghua Yan Ke Za Zhi. 2019 Sep 11;55(9):641–44. doi:10.3760/cma.j.issn.0412-4081.2019.09.001.
  • Ban Y, Dota A, Cooper LJ, Fullwood NJ, Nakamura T, Tsuzuki M, Mochida C, Kinoshita S. Tight junction-related protein expression and distribution in human corneal epithelium. Exp Eye Res. 2003;76:663–69. doi:10.1016/S0014-4835(03)00054-X.
  • Matter K, Balda MS. Signaling to and from tight junctions. Nat Rev Mol Cell Biol. 2003;4:225–36. doi:10.1038/nrm1055.
  • McCartney MD, Cantu-Crouch D. Rabbit corneal epithelial wound repair: tight junction reformation. Curr Eye Res. 1992;11:15–24. doi:10.3109/02713689209069163.
  • Wang Y, Zhang J, Yi XJ, Yu FS. Activation of ERK1/2 MAP kinase pathway induces tight junction disruption in human corneal epithelial cells. Exp Eye Res. 2004;78:125–36. doi:10.1016/j.exer.2003.09.002.
  • Yin J, Yu FSX. Rho kinases regulate corneal epithelial wound healing. Am J Physiol Cell Physiol. 2008;295:C378–C387. doi:10.1152/ajpcell.90624.2007.
  • González-Mariscal L, Tapia R, Chamorro D. Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta. 2008;1778:729–56. doi:10.1016/j.bbamem.2007.08.018.
  • Fürst R, Bubik MF, Bihari P, Mayer BA, Khandoga AG, Hoffmann F, Rehberg M, Krombach F, Zahler S, Vollmar AM. Atrial natriuretic peptide protects against histamine-induced endothelial barrier dysfunction in vivo. Mol Pharmacol. 2008;74:1–8. doi:10.1124/mol.108.045773.
  • Ivanov AI, McCall IC, Parkos CA, Nusrat A. Role for actin filament turnover and a myosin II motor in cytoskeleton-driven disassembly of the epithelial apical junctional complex. Mol Biol Cell. 2004;15:2639–51. doi:10.1091/mbc.e04-02-0163.
  • Shen L, Black ED, Witkowski ED, Lencer WI, Guerriero V, Schneeberger EE, Turner JR. Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J Cell Sci. 2006;119:2095–106. doi:10.1242/jcs.02915.
  • Guo S, Chen S, Ma J, Ma Y, Zhu J, Ma Y, Liu Y, Wang P, Pan Y. Escherichia coli nissle 1917 protects intestinal barrier function by inhibiting NF-κB-mediated activation of the MLCK-P-MLC signaling pathway. Mediators Inflamm. 2019;2019:5796491. doi:10.1155/2019/5796491.
  • He L, Hannon GJ. Micro RNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31. doi:10.1038/nrg1379.
  • Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS, Cheng JQ. MicroRNA-155 is regulated by the transforming growth factor β/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol. 2008;128:6773–84. doi:10.1128/MCB.00941-08.
  • Yang L, Zheng Z, Zhou Q, Bai X, Fan L, Yang C, Su L, Hu D. miR-155 promotes cutaneous wound healing through enhanced keratinocytes migration by MMP-2. J Mol Hist. 2017;48:147–55. doi:10.1007/s10735-017-9713-8.
  • Weber M, Kim S, Patterson N, Rooney K, Searles CD. MiRNA-155 targets myosin light chain kinase and modulates actin cytoskeleton organization in endothelial cells. Am J Physiol Heart Circ Physiol. 2014;306:H1192–203. doi:10.1152/ajpheart.00521.2013.
  • Zhu HQ, Zhou Q, Jiang ZK, Gui SY, Wang Y. Association of aorta intima permeability with myosin light chain kinase expression in hypercholesterolemic rabbits. Mol Cell Biochem. 2008;347:209–15. doi:10.1007/s11010-010-0630-3.
  • DelMonte DW, Kim T. Anatomy and physiology of the cornea. J Cataract Refract Surg. 2011;37:588–98. doi:10.1016/j.jcrs.2010.12.037.
  • Martin P. Wound healing-aiming for perfect skin regeneration. Science. 1997;276:75–81. doi:10.1126/science.276.5309.75.
  • Musch MW, Walsh-Reitz MM, Chang EB. Roles of ZO-1, occludin, and actin in oxidant-induced barrier disruption. Am J Physiol Gastrointest Liver Physiol. 2006;290:G222–G231. doi:10.1152/ajpgi.00301.2005.
  • Wang F, Gao N, Yin J, Yu FS. Reduced innervation and delayed re-innervation after epithelial wounding in type 2 diabetic Goto-Kakizaki rats. Am J Pathol. 2012;181:2058–66. doi:10.1016/j.ajpath.2012.08.029.
  • Huang C, Liao R, Wang F, Tang S. Characteristics of reconstituted tight junctions after corneal epithelial wounds and ultrastructure alterations of corneas in Type 2 diabetic rats. Curr Eye Res. 2016;41:783–90. doi:10.3109/02713683.2015.1039653.
  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. Microarray analysis shows that some MicroRNAs down-regulate large numbers of target mRNAs. Nature. 2005;433:769–73. doi:10.1038/nature03315.
  • Biswas S, Roy S, Banerjee J, Hussain SR, Khanna S, Meenakshisundaram G, Kuppusamy P, Friedman A, Sen CK. Hypoxia inducible microRNA 210 attenuates keratinocyte proliferation and impairs closure in a murine model of ischemic wounds. Proc Natl Acad Sci USA. 2010;107:6976–81. doi:10.1073/pnas.1001653107.
  • Yang X, Wang J, Guo SL, Fan KJ, Wang YL, Teng Y, Yang X. MiR-21 promotes keratinocyte migration and re-epithelialization during wound healing. Int J Biol Sci. 2011;7:685–90. doi:10.7150/ijbs.7.685.
  • Bertero T, Gastaldi C, Bourget-Ponzio I, Imbert V, Loubat A, Selva E, Busca R, Mari B, Hofman P, Barbry P, et al. miR-483-3p controls proliferation in wounded epithelial cells. Faseb J. 2011;25:3092–105. doi:10.1096/fj.10-168401.
  • Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, van Dongen S, Grocock RJ, Das PP, Miska EA, et al. Requirement of bic/microRNA-155 for normal immune function. Science. 2007;316:608–11. doi:10.1126/science.1139253.
  • O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci. 2007;104:1604–09. doi:10.1073/pnas.0610731104.
  • Pottier N, Maurin T, Chevalier B, Puisségur MP, Lebrigand K, Robbe-Sermesant K, Bertero T, Lino Cardenas CL, Courcot E, Rios G, et al. Identification of keratinocyte growth factor as a target of microRNA-155 in lung fibroblasts: implication in epithelial mesenchymal interactions. PLoS One. 2009;4:e6718. doi:10.1371/journal.pone.0006718.
  • Graham WV, He W, Marchiando AM, Zha J, Singh G, Li HS, Biswas A, Ong MLDM, Jiang ZH, Choi W, et al. Intracellular MLCK1 diversion reverse barrier loss to restor mucosal. Nat Med. 2019;25:690–900. doi:10.1038/s41591-019-0393-7.
  • Droy-Lefaix MT, Bueno L, Caron P, Belot E, Roche O. Ocular inflammation and corneal permeability alteration by benzalkonium chloride in rats: a protective effect of a myosin light chain kinase inhibitor. Invest Ophthalmol Vis Sci. 2013;54:2705–10. doi:10.1167/iovs.12-10193.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.