236
Views
8
CrossRef citations to date
0
Altmetric
Retina/Choroid

Liraglutide Up-regulation Thioredoxin Attenuated Müller Cells Apoptosis in High Glucose by Regulating Oxidative Stress and Endoplasmic Reticulum Stress

, , , , , , & show all
Pages 1283-1291 | Received 11 Nov 2019, Accepted 25 Feb 2020, Published online: 17 Mar 2020

References

  • Karadeniz S. Diabetic retinopathy: from evidence and promise to real life observations. Diabetes Res Clin Pract. 2017;124:102–04. doi:10.1016/j.diabres.2017.01.018.
  • Tang L, Zhang Y, Jiang Y, Willard L, Ortiz E, Wark L, Medeiros D, Lin D. Dietary wolfberry ameliorates retinal structure abnormalities in db/db mice at the early stage of diabetes. Adv Exp Med Biol. 2011;236(9):1051–63. doi:10.1258/ebm.2011.010400.
  • Sugimoto M, Sasoh M, Ido M, Wakitani Y, Takahashi C, Uji Y. Detection of early diabetic change with optical coherence tomography in type 2 diabetes mellitus patients without retinopathy. Ophthalmologica. 2005;219(6):379–85. doi:10.1159/000088382.
  • Kim J, Kim J, Park J, Lee S, Kim W, Yu Y, Kim K. Blood-neural barrier intercellular communication atglio-vascular interface. J Biochem Mol Biol. 2006;39(4):339–45. doi:10.5483/bmbrep.2006.39.4.339.
  • Kuhrt H, Wurm A, Karl A, Iandiev I, Wiedemann P, Reichenbach A, Bringmann A, Pannicke T. Müller cell gliosis in retinal organ culture mimics gliotic alterations after ischemia in vivo. Int J Dev Neurosci. 2008;26(7):745–51. doi:10.1016/j.ijdevneu.2008.07.003.
  • Verma A, Rani P, Raman R, Pal S, Laxmi G, Gupta M, Sahu C, Vaitheeswaran K, Sharma T. Is neuronal dysfunction an early sign of diabetic retinopathy Microperimetry and spectral domain optical coherence tomography (SD-OCT) study in individuals with diabetes, but no diabetic retinopathy. Eye Vis (London). 2009;23(9):1824–30. doi:10.1038/eye.2009.184.
  • Boynton G, Stem M, Kwark L, Jackson G, Farsiu S, Gardner T. Multimodal characterization of proliferative diabetic retinopathy reveals alterations in outer retinal function and structure. Ophthalmology. 2015;122(5):957–67. doi:10.1016/j.ophtha.2014.12.001.
  • Barber A, Antonetti D, Gardner T. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State retina research group. Invest Ophthalmol Visual Sci. 2000;41:3561–68.
  • Pannicke T, Iandiev I, Wurm A, Uckermann O, Vom Hagen F, Reichenbach A, Wiedemann P, Hammes HP, Bringmann A. Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes. 2006;55(3):633–39. doi:10.2337/diabetes.55.03.06.db05-1349.
  • Lieth E, Barber A, Xu B, Dice C, Ratz M, Tanase D, Strother J. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State retina research group. Diabetes. 1998;47:815–20. doi:10.2337/diabetes.47.5.815.
  • Xu G, Kaneto H, Laybutt D, Duvivier-Kali V, Trivedi N, Suzuma K, King G, Weir G, Bonner-Weir S. Downregulation of GLP-1 and GIP receptor expression by hyperglycemia: possible contribution to impaired incretin effects in diabetes. Diabetes. 2007;56(6):1551–58. doi:10.2337/db06-1033.
  • Malendowicz L, Macchi C, Nussdorfer G, Nowak K, Zyterska A, Ziolkowska A. Effects of prolonged exendin-4 administration on entero-insular axis of normal and streptozotocin-induced diabetic rats. Int J Mol Med. 2003;11:763–66.
  • Baggio L, Drucker D. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131–57. doi:10.1053/j.gastro.2007.03.054.
  • Willard F, Sloop K. Physiology and emerging biochemistry of the glucagon-like peptide-1 receptor. Diabetes Res Clin Pract. 2012;2012:470851.
  • Iepsen E, Torekov S, Holst J. Liraglutide for type 2 diabetes and obesity: a 2015 update. Expert Rev Cardiovasc Ther. 2015;13(7):753–67. doi:10.1586/14779072.2015.1054810.
  • Wang J, Wang C, Li S, Li W, Yuan G, Pan Y, Chen H. Anti-diabetic effects of Inonotus obliquus polysaccharides in streptozotocin-induced type 2 diabetic mice and potential mechanism via PI3K-Akt signal pathway. Biomed Pharmacother. 2017;95:1669–77. doi:10.1016/j.biopha.2017.09.104.
  • Hernández C, Bogdanov P, Corraliza L, García-Ramírez M, Solà-Adell C, Arranz J, Arroba A, Valverde A, Simó R. Topical administration of GLP-1 receptor agonists prevents retinal neurodegeneration in experimental diabetes. Diabetes. 2016;65:172–87. doi:10.2337/db15-0443.
  • Wu Y, Tang L, Chen B. Oxidative stress: implications for the development of diabetic retinopathy and antioxidant therapeutic perspectives. Oxid Med Cell Longev. 2014;2014:752387. doi:10.1155/2014/752387.
  • Abhary S, Burdon KP, Laurie K, Thorpe S, Landers J, Goold L, Lake S, Petrovsky N, Craig J. Aldose reductase gene polymorphisms and diabetic retinopathy susceptibility. Diabetes Care. 2010;33(8):1834–36. doi:10.2337/dc09-1893.
  • Huang J, Li X, Li M, Li J, Xiao W, Ma W, Chen X, Liang X, Tang S, Luo Y. Mitochondria targeted antioxidant peptide SS31 protects the retinas of diabetic rats. Curr Mol Med. 2013;13:936–45. doi:10.2174/15665240113139990049.
  • Ma J, Wang J, Zhang S. The unfolded protein response and diabetic retinopathy. J Diabetes Res. 2014;2014:160140. doi:10.1155/2014/160140.
  • Chevet E, Cameron P, Pelletier M. The endoplasmic reticulum: integration of protein folding, quality control, signaling and degradation. Curr Opin Struct Biol. 2001;11:120–24. doi:10.1016/S0959-440X(00)00168-8.
  • Oshitari T, Hata N, Yamamoto S. Endoplasmic reticulum stress and diabetic retinopathy. Vasc Health Risk Manag. 2008;4(1):115–22. doi:10.2147/VHRM.S2293.
  • Hu W, Liu R, Pei H, Li B. Endoplasmic reticulum stress-related factors protect against diabetic retinopathy. Diabetes Res Clin Pract. 2012;2012:507986.
  • Chen G, Li X, Huang M, Li M, Zhou X, Li Y, Bai J. Thioredoxin-1 increases survival in sepsis by inflammatory response through suppressing endoplasmic reticulum stress. Shock. 2016;46(1):67–74. doi:10.1097/SHK.0000000000000570.
  • Zhao X, Zhao J, Li X, Zhang Y, Jiao X. The change of thioredoxin system in myocardial tissue of type 2 diabetic rats undergoing myocardial injury. Acta Physiol Sinica. 2010;62:261–68.
  • Masutani H, Ueda S, Yodoi J. The thioredoxin system in retroviral infection and apoptosis. Cell Death Differ. 2005;12(Suppl 1):991–98. doi:10.1038/sj.cdd.4401625.
  • Barber A. A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Retin Eye Res. 2003;27:283–90.
  • Zhou T, Che D, Lan Y, Fang Z, Xie J, Gong H, Li C, Feng J, Hong H, Qi W, et al. Mesenchymal marker expression is elevated in Müller Cells exposed to high glucose and in animal models of diabetic retinopathy. Oncotarget. 2017;8(3):4582–94. doi:10.18632/oncotarget.13945.
  • Villarroel M, Ciudin A, Hernández C, Simó R. Neurodegeneration: an early event of diabetic retinopathy. World J Diabetes. 2010;1(2):57–64. doi:10.4239/wjd.v1.i2.57.
  • Rungger-Brändle E, Dosso A, Leuenberger PM. Glial reactivity an early feature of diabetic retinopathy. Invest Ophthalmol Visual Sci. 2000;41:1971–80.
  • Vázquez-Carrera M. Unraveling the effects of ppar-β/δ on insulin resistance and cardiovascular disease. Trends Endocrinol Metab. 2016;27(5):319–34. doi:10.1016/j.tem.2016.02.008.
  • Lewis G, Fisher S. Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression. Int Rev Cytol. 2003;230:263–90.
  • Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov S, Osborne N, Reichenbach A. Müller cells in the healthy and diseased retina. Prog Retin Eye Res. 2006;25(4):397–424. doi:10.1016/j.preteyeres.2006.05.003.
  • Cai X, McGinnis J. Diabetic retinopathy: animal models,therapies,and perspectives. J Diabetes Res. 2016;2016:3789217. doi:10.1155/2016/3789217.
  • Yichao F, Kun L, Qingping W, Yuanyuan R, Wen Y. Exendin-4 protects retinal cells from early diabetes in Goto-Kakizaki rats by Increasing the Bcl-2/Bax and Bcl-Xl/Bax ratios and reducing reactive gliosis. Mol Vis. 2014;20:1557–68.
  • Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P, Osborne N, Reichenbach A. Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res. 2009;28(6):423–51. doi:10.1016/j.preteyeres.2009.07.001.
  • Harkavyi A, Abuirmeileh A, Lever R, Kingsbury A, Biggs C, Whitton P. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson’s disease. J Neuroinflamm. 2008;5:19. doi:10.1186/1742-2094-5-19.
  • Perry T, Haughey N, Mattson M, Egan J, Greig N. Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. J Pharmacol Exp Ther. 2002;302(3):881–88. doi:10.1124/jpet.102.037481.
  • Kastin A, Akerstrom V. Entry of exendin-4 into brain is rapid but may be limited at high doses. Int J Obes Relat Metab Disord. 2003;27:313–18. doi:10.1038/sj.ijo.0802206.
  • Kastin A, Akerstrom V, Pan W. Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier. J Mol Neurosci. 2002;18:7–14. doi:10.1385/JMN:18:1-2:07.
  • Holz G. Epac: a new cAMP-binding protein in support of glucagon-like peptide-1 receptor–mediated signal transduction in the pancreatic β-cell. Diabetes. 2004;53(1):5–13. doi:10.2337/diabetes.53.1.5.
  • Oeseburg H, deBoer R, Buikema H, vanderHarst P, vanGilst W, Silljé H. Glucagon-like peptide 1 prevents reactive oxygen species-induced endothelial cell senescence through the activation of protein kinase A. Arterioscl Throm Vas. 2010;30(7):1407–14. doi:10.1161/ATVBAHA.110.206425.
  • Fujita H, Morii T, Fujishima H, Sato T, Shimizu T, Hosoba M, Tsukiyama K, Narita T, Takahashi T, Drucker D, et al. The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential. Kidney Int. 2014;85(3):579–89. doi:10.1038/ki.2013.427.
  • Cerny O, Anderson K, Stephens L, Hawkins P, Sebo P. cAMP signaling of adenylate cyclase toxin blocks the oxidative burst of neutrophils through Epac-mediated inhibition of phospholipase C activity. J Immunol. 2017;198(3):1285–96. doi:10.4049/jimmunol.1601309.
  • Kong L, Zhou X, Li F, Yodoi J, McGinnis J, Cao W. Neuroprotective effect of overexpression of thioredoxin on photoreceptor degeneration in Tubby mice. Neurobiol Dis. 2010;38(3):446–55. doi:10.1016/j.nbd.2010.03.005.
  • Xu C, Yuan X, Pan Z, Shen G, Kim J. Mechanism of action of isothiocyanates: the induction of ARE-regulated genes is associated with activation of ERK and JNK and the phosphorylation and nuclear translocation of Nrf2. Mol Cancer Ther. 2006;5(8):1918–26. doi:10.1158/1535-7163.MCT-05-0497.
  • Copple I, Goldring C, Kitteringham N, Park B. The Nrf2-Keap1 defence pathway: role in protection against drug-induced toxicity. Toxicol. 2008;246(1):24–33. doi:10.1016/j.tox.2007.10.029.
  • Lupachyk P, Watcho R, Stavniichuk H, Shevalye I, Obrosova G. Endoplasmic reticulum stress plays a key role in the pathogenesis of diabetic peripheral neuropathy. Diabetes. 2013;62:944–52. doi:10.2337/db12-0716.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.