287
Views
3
CrossRef citations to date
0
Altmetric
Sclera

Quantitative Study of Human Scleral Melanocytes and Their Topographical Distribution

, , , , , & show all
Pages 1563-1571 | Received 18 Nov 2019, Accepted 03 May 2020, Published online: 25 May 2020

References

  • Hu DN, McCormick SA, Ritch R, Pelton-Henrion K. Studies of human uveal melanocytes in vitro: isolation, purification and cultivation of human uveal melanocytes. Invest Ophthalmol Vis Sci. 1993;33:2210−19.
  • Hu DN, McCormick SA, Ritch R. Studies of human uveal melanocytes in vitro: growth regulation of cultured human uveal melanocytes. Invest Ophthalmol Vis Sci. 1993;34:2220−27.
  • Hu DN, McCormick SA, Orlow SJ, Rosemblat S, Lin AY, Wo K. Melanogenesis in cultured human uveal melanocytes. Invest Ophthalmol Vis Sci. 1995;36:931−38.
  • Hu DN, McCormick SA, Orlow SJ, Rosemblat S, Lin AY. Regulation of melanogenesis by human uveal melanocytes in vitro. Exp Eye Res. 1997;64:397−404.
  • Hu DN. Regulation of growth and melanogenesis of uveal melanocytes (Keynote Lecture). Pigment Cell Res. 2000;13:81−86.
  • Wang Y, Hu DN, McCormick SA, Savage HE, O’Rourke J. Tissue plasminogen activator is released into cultured medium by cultured human uveal melanocytes. Pigment Cell Res. 2002;15:373−78.
  • Chu SC, Hu DN, Yang SF, Yang PY, Hsieh YS, Huang SM, Yu G, McCormick SA. Uveal melanocytes produce matrix metalloproteinases-2 and −9 in vitro. Pigment Cell Res. 2004;17:636−42.
  • Wakamatsu K, Hu DN, McCormick SA, Ito S. Characterization of melanin in human iridal and choroidal melanocytes from eyes with various colored irides. Pigment Cell Res. 2008;21:97−105.
  • Albert DM, Polans A. Ocular Oncology. New York (NY): Marcel Dekker; 2003. 189−210.
  • Hu DN, Chen M, Zhang DY, Ye F, McCormick SA, Chan CC. Interleukin-1β increases baseline expression and secretion of interleukin-6 by human uveal melanocytes in vitro via p38 MAPK/NF-κB pathway. Invest Ophthalmol Vis Sci. 2011;52:3767−74.
  • Hu DN, McCormick SA, Lin AY, Lin JY. TGF-ß2 inhibits growth of uveal melanocytes at physiological concentrations. Exp Eye Res. 1998;67:143−50.
  • Prota G, Hu DN, Vincensi MR, McCormick SA, Napolitano A. Characterization of melanins in human irides and cultured uveal melanocytes from eyes of different colors. Exp Eye Res. 1998;67:293−99.
  • Hu DN, Stjernschantz J, McCormick SA. Effect of prostaglandin A2, E1, F2α, and latanoprost on cultured human iridal melanocytes. Exp Eye Res. 2000;70:113−20.
  • Hu DN, Woodward DF, McCormick SA. Influence of autonomic neurotransmitters on human uveal melanocytes in vitro. Exp Eye Res. 2000;71:217−24.
  • Hu DN, Rosen RB, Chan CC, Yang WE, Yang SF. Uveal melanocytes express high constitutive levels of MMP-8 which can be upregulated by TNF-α via the MAPK pathway. Exp Eye Res. 2018;175:181−91.
  • Hu DN, Savage H, Roberts JE. Uveal Melanocytes, Ocular Pigment Epithelium and Mueller Cells in Culture: In Vitro Toxicology, Int J Toxicol. 2002;21:465−72.
  • Hu DN. Photobiology of ocular melanocytes and melanoma. Photochem Photobiol. 2005;81:506−09.
  • Li L, Hu DN, Zhao H, McCormick SA, Nordlund JJ, Boissy RE. Uveal melanocytes do not respond to or express receptors for alpha-melanocyte-stimulating hormone. Invest Ophthalmol Vis Sci. 2006;47:4507−12.
  • Hu DN, McCormick SA, Seedor JA, Ritterband DC, Shah MK. Isolation, purification and cultivation of conjunctival melanocytes. Exp Eye Res. 2007;84:655−62.
  • Hu DN, Bi M, Zhang DY, Ye F, McCormick SA, Chan CC. Constitutive and LPS-induced expression of MCP-1 and IL-8 by human uveal melanocytes in vitro and relevant signal pathways. Invest Ophthalmol Vis Sci. 2014;55:5760−69.
  • Cioanca AV, McCluskey PJ, Eamegdool SS, Madigan MC. Human choroidal melanocytes express functional Toll-like receptors (TLRs). Exp Eye Res. 2018;173:73−84.
  • Jehs T, Faber C, Juel HB, Bronkhorst IH, Jager MJ, Nissen MH. Inflammation-induced chemokine expression in uveal melanoma cell lines stimulates monocyte chemotaxis. Invest Ophthalmol Vis Sci. 2014;55:5169−75.
  • Sarna T. Properties and function of the ocular melanin: a photobiophysical view. J Photochem Photobiol. 1992;12:215−58.
  • Jakobiec FA. Ocular Anatomy, Embryology, and Teratology. Philadelphia (PN): Harper & Row; 1982. 587−99.
  • Duke-Elder S, Wyber KC. System of Ophthalmology. vol. II, The Anatomy of the Visual System. St. Louis (MO): C.V. Mosby; 1961. 75−92.
  • Bron AJ, Tripathi RC, Tripathi BJ. Wolff’s Anatomy of the Eye and Orbit. 8th ed. London (UK): Chapman & Hall Medical; 1997. p. 274−77.
  • van der Werf F, Baljet B, Otto AJ. Pigment-containing cells in extraocular tissues of the primate. Doc Ophthalmol. 1992;81:357−68.
  • Spencer WH. Ophthalmic Pathology: an Atlas and Textbook. Vol. 1. 4th ed. Philadelphia (PN): W.B. Saunders; 1966. p. 334−71.
  • Schields JA, Schields CL. Intraocular tumors: A text and Atlas. Philadelphia (PN): W.B. Saunders; 1992. 45−59.
  • Imesch PD, Bindley CD, Khademian Z, Ladd B, Gangnon R, Albert DM, Wallow IH. Melanocytes and iris color. Electron Microscopic Findings. Arch Ophthalmol. 1996;114:443−47.
  • Fischer AH, Jacobson KA, Rose J, Zeller R. Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2008.
  • Albert DM, Green WR, Zimbric ML. Iris melanocyte numbers in Asian, African American, and Caucasian irides. Trans Am Ophthalmol Soc. 2003;101:217−21.
  • Wilkerson CL, Syed NA, Fisher MR, Robinson NL, Wallow IH, Albert DM. Melanocytes and iris color. Light Microscopic Findings. Arch Ophthalmol. 1996;114:437−42.
  • Kuberappa PH, Bagalad BS, Ananthaneni A, Kiresur MA, Srinivas GV. Certainty of S100 from physiology to pathology. J Clin Diagn Res. 2016;10:ZE10−5I.
  • Aydin IT, Hummler E, Smit NP, Beermann FAydin IT, Hummler E, Smit NP, Beermann F. Coat color dilution in mice because of inactivation of the melanoma antigen. MART-1.Pigment Cell Melanoma Res. 2012;25:37−46.
  • Hoashi T, Watabe H, Muller J, Yamaguchi Y, Vieira WD, Hearing VJ. MART-1 is required for the function of the melanosomal matrix protein PMEL17/GP100 and the maturation of melanosomes. J Biol Chem 2005;280:14006−16.
  • Lu S, Slominski A, Yang SE, Sheehan C, Ross J, Carlson JA. The correlation of TRPM1 (Melastatin) mRNA expression with microphthalmia-associated transcription factor (MITF) and other melanogenesis-related proteins in normal and pathological skin, hair follicles and melanocytic nevi. J Cutan Pathol. 2010;37:26−40.
  • Yaziji H, Gown AM. Immunohistochemical markers of melanocytic tumors. Int J Surg Pathol. 2003;11:11−15.
  • Zimmerman LE. Melanocytes, melanocytic nevi, and melanocytomas. Invest Ophthalmol. 1965;4:11−41.
  • Eagle RC Jr. Iris pigmentation and pigmented lesions: an ultrastructural study. Trans Am Ophthalmol Soc. 1988;86:581−687.
  • Liesegang TJ. Pigmented conjunctival and scleral lesions. Mayo Clin Proc. 1994;69:151−61.
  • Shields CL, Qureshi A, Mashayekhi A. Sector (partial) oculo(dermal) melanocytosis in 89 eyes. Ophthalmology. 2011;118:2474−79.
  • Singh AD, De Potter P, Fijal BA, Shields CL, Shields JA, Elston RC. Lifetime prevalence of uveal melanoma in white patients with oculo(dermal) melanocytosis. Ophthalmology. 1998;105:195−98.
  • Morgan IG, Ohno-Matsui K, Saw SM. Myopia. Lancet. 2012;379:1739−48.
  • Wang TY, Foster PJ, Ng TP, Tielsch JM, Johnson GJ, Seah SK. Variations in ocular biometry in an adult Chinese population in Singapore: the Tanjong Pagar Survey. Invest Ophthalmol Vis Sci. 2001;42:73−80.
  • Sun J, Zhou J, Zhao P, Lian J, Zhu H, Zhou Y, Sun Y, Wang Y, Zhao L, Wei Y, et al. High prevalence of myopia and high myopia in 5060 Chinese university students in Shanghai. Invest Ophthalmol Vis Sci. 2012;53:7504−09.
  • Chang RT, Singh K. Myopia and glaucoma: diagnostic and therapeutic challenges. Curr Opin Ophthalmol. 2013;24:96−101.
  • McBrien NA, Gentle A. Role of the sclera in the development and pathological complications of myopia. Prog Retin Eye Res. 2003;22:307−38.
  • Murphy G, Nagase H. Progress in matrix metalloproteinase research. Mol Aspects Med. 2008;29:290−308.
  • Yang SR, Ye JJ, Long Q. Expressions of collagen, matrix metalloproteases-2, and tissue inhibitor of matrix metalloproteinase-2 in the posterior sclera of newborn guinea pigs with negative lens-defocused myopia. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2010;32:55−59.
  • Schippert R, Brand C, Schaeffel F, Feldkaemper MP. Changes in scleral MMP-2, TIMP-2 and TGFbeta-2 mRNA expression after imposed myopic and hyperopic defocus in chickens. Exp Eye Res. 2006;82:710−19.
  • Siegwart JT Jr, Norton TT. Selective regulation of MMP and TIMP mRNA levels in tree shrew sclera during minus lens compensation and recovery. Invest Ophthalmol Vis Sci. 2005;46:3484−92.
  • Siegwart JT Jr, Norton TT. Steady state mRNA levels in tree shrew sclera with form-deprivation myopia and during recovery. Invest Ophthalmol Vis Sci. 2001;42:1153−59.
  • Rada JA, Perry CA, Slover ML, Achen VR. Gelatinase A and TIMP-2 expression in the fibrous sclera of myopic and recovering chick eyes. Invest Ophthalmol Vis Sci. 1999;40:3091−99.
  • Jones BE, Thompson EW, Hodos W, Waldbillig RJ, Chader GJ. Scleral matrix metalloproteinases, serine proteinase activity and hydrational capacity are increased in myopia induced by retinal image degradation. Exp Eye Res. 1996;63:369−81.
  • Siegwart JT Jr, Norton TT. The time course of changes in mRNA levels in tree shrew sclera during induced myopia and recovery. Invest Ophthalmol Vis Sci. 2002;43:2067−75.
  • Guggenheim JA, McBrien NA. Form-deprivation myopia induces activation of scleral matrix metalloproteinase-2 in tree shrew. Invest Ophthalmol Vis Sci. 1996;37:1380−95.
  • Aimes RT, Quigley JP. Matrix metalloproteinase is an interstitial collagenase. J Biol Chem. 1995;270:5872−76.
  • Jia Y, Hu DN, Zhu D, Zhang L, Gu P, Fan X, Zhou J. MMP-2, MMP-3, TIMP-1, TIMP-2 and TIMP-3 protein levels in human aqueous humor: relationship with axial length. Invest Ophthalmol Vis Sci. 2014;55:39−3928.
  • Zhuang H, Zhang R, Shu Q, Jiang R, Chang Q, Huang X, Jiang C, Xu G. Changes of TGF-β2, MMP-2, and TIMP-2 levels in the vitreous of patients with high myopia. Graefes Arch Clin Exp Ophthalmol. 2014;252:1763−67.
  • Curnow SJ, Falciani F, Durrani OM, Cheung CM, Ross EJ, Wloka K, Rauz S, Wallace GR, Salmon M, Murray PI. Multiplex bead immunoassay analysis of aqueous humor reveals distinct cytokine profiles in uveitis. Invest Ophthalmol Vis Sci. 2005;46:4251−59.
  • van Kooij B, Rothova A, Rijkers GT, de Groot-mijnes JD. Distinct cytokine and chemokine profiles in the aqueous of patients with uveitis and cystoid macular edema. Am J Ophthalmol. 2006;142:192−94.
  • Sijssens KM, Rijkers GT, Rothova A, Stilma JS, de Boer JH. Distinct cytokine patterns in the aqueous humor of children, adolescents and adults with uveitis. Ocul Immunol Inflamm. 2008;16:211−16.
  • Lahmar I, Abou-Bacar A, Abdelrahman T, Guinard M, Babba H, Ben Yahia S, Kairallah M, Speeg-Schatz C, Bourcier T, Sauer A, et al. Cytokine profiles in toxoplasmic and viral uveitis. J Infect Dis. 2009;199:1239−49.
  • AMA E-A, Berghmans N, Al-Obeidan SA, Gikandi PW, Opdenakker G, Van Damme J, Struyf S. Differential CXC and CX3C Chemokine Expression Profiles in Aqueous Humor of Patients With Specific Endogenous Uveitic Entities. Invest Ophthalmol Vis Sci. 2018;59:2222−28.
  • Chan CC, Hikita N, Dastgheib K, Whitcup SM, Gery I, Nussenblatt RB. Experimental melanin-protein-induced uveitis in the Lewis rat. Immunopathologic Processes. Ophthalmology. 1994;101:1275−80.
  • Smith JR, Rosenbaum JT, Williams KA. Experimental melanin-induced uveitis: experimental model of human acute anterior uveitis. Ophthalmic Res. 2008;40:136−40.
  • Toguri JT, Lehmann C, Laprairie RB, Szczesniak AM, Zhou J, Denovan-Wright EM, Kelly ME. Anti-inflammatory effects of cannabinoid CB(2) receptor activation in endotoxin-induced uveitis. Anti-inflammatory effects of cannabinoid CB(2) receptor activation in endotoxin-induced uveitis. Br J Pharmacol. 2014;171:1448−61.
  • Nishida T, Miyata S, Itoh Y, Mizuki N, Ohgami K, Shiratori K, Ilieva IB, Ohno S, Taylor AW. Anti-inflammatory effects of alpha-melanocyte-stimulating hormone against rat endotoxin-induced uveitis and the time course of inflammatory agents in aqueous humor. Int Immunopharmacol. 2004;4:1059−66.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.