125
Views
1
CrossRef citations to date
0
Altmetric
Lens

Curcumin Suppresses TGF-β2-Induced Proliferation, Migration, and Invasion in Lens Epithelial Cells by Targeting KCNQ1OT1/miR-377-3p/COL1A2 Axis in Posterior Capsule Opacification

, &
Pages 715-726 | Received 20 May 2021, Accepted 10 Dec 2021, Published online: 27 Mar 2022

References

  • Wormstone IM, Eldred JA. Experimental models for posterior capsule opacification research. Exp Eye Res. 2016;142:2–12. doi:10.1016/j.exer.2015.04.021.
  • Milazzo S, Grenot M, Benzerroug M. [Posterior capsule opacification]. J Fr Ophtalmol. 2014;37:825–830. doi:10.1016/j.jfo.2014.09.003.
  • Zheng D, Song T, Zhongliu X, Wu M, Liang J, Liu Y. Downregulation of transforming growth factor-β type II receptor prohibit epithelial-to-mesenchymal transition in lens epithelium. Mol Vis. 2012;18:1238–1246.
  • de Iongh RU, Wederell E, Lovicu FJ, McAvoy JW. Transforming growth factor-beta-induced epithelial-mesenchymal transition in the lens: a model for cataract formation. Cells Tissues Organs. 2005;179:43–55. doi:10.1159/000084508.
  • Yang Y, Ye Y, Lin X, Wu K, Yu M. Inhibition of pirfenidone on TGF-beta2 induced proliferation, migration and epithlial-mesenchymal transition of human lens epithelial cells line SRA01/04. PLoS One. 2013;8:e56837. doi:10.1371/journal.pone.0056837.
  • James MI, Iwuji C, Irving G, Karmokar A, Higgins JA, Griffin-Teal N, Thomas A, Greaves P, Cai H, Patel SR, et al. Curcumin inhibits cancer stem cell phenotypes in ex vivo models of colorectal liver metastases, and is clinically safe and tolerable in combination with FOLFOX chemotherapy. Cancer Lett. 2015;364(2):135–141. doi:10.1016/j.canlet.2015.05.005.
  • Aggarwal BB, Gupta SC, Sung B. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br J Pharmacol. 2013;169(8):1672–1692. doi:10.1111/bph.12131.
  • Prasad S, Gupta SC, Tyagi AK, Aggarwal BB. Curcumin, a component of golden spice: from bedside to bench and back. Biotechnol Adv. 2014;32:1053–1064. doi:10.1016/j.biotechadv.2014.04.004.
  • Liu H, Mao Y, Xia B, Long C, Kuang X, Huang H, Ning J, Ma X, Zhang H, Wang R, et al. Curcumin Inhibits Proliferation and Epithelial-Mesenchymal Transition in Lens Epithelial Cells through Multiple Pathways. Biomed Res Int. 2020;2020:6061894. doi:10.1155/2020/6061894.
  • Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature. 2012;482:339–346. doi:10.1038/nature10887.
  • Akhade VS, Pal D, Kanduri C. Long noncoding RNA: genome organization and mechanism of action. Adv Exp Med Biol. 2017;1008:47–74. doi:10.1007/978-981-10-5203-3_2.
  • Zhang X, Wang W, Zhu W, Dong J, Cheng Y, Yin Z, Shen F. Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. IJMS. 2019;20:5573. doi:10.3390/ijms20225573.
  • Shi X, Sun M, Liu H, Yao Y, Song Y. Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett. 2013;339(2):159–166. doi:10.1016/j.canlet.2013.06.013.
  • Wang H, Zheng G. LncRNA NEAT1 promotes proliferation, migration, invasion and epithelial-mesenchymal transition process in TGF-β2-stimulated lens epithelial cells through regulating the miR-486-5p/SMAD4 axis. Cancer Cell Int. 2020;20:529. doi:10.1186/s12935-020-01619-8.
  • Dong N. Long noncoding RNA MALAT1 acts as a competing endogenous RNA to Regulate TGF-β2 induced epithelial-mesenchymal transition of lens epithelial cells by a MicroRNA-26a-dependent mechanism. Biomed Res Int. 2019;2019:1569638. doi:10.1155/2019/1569638.
  • Shen Y, Dong LF, Zhou RM, Yao J, Song YC, Yang H, Jiang Q, Yan B. Role of long non-coding RNA MIAT in proliferation, apoptosis and migration of lens epithelial cells: a clinical and in vitro study. J Cell Mol Med. 2016;20:537–548. doi:10.1111/jcmm.12755.
  • Chen B, Ma J, Li C, Wang Y. Long noncoding RNA KCNQ1OT1 promotes proliferation and epithelial‑mesenchymal transition by regulation of SMAD4 expression in lens epithelial cells. Mol Med Rep. 2018;18:16–24.
  • Paraskevopoulou MD, Hatzigeorgiou AG. Analyzing miRNA-LncRNA Interactions. Methods Mol Biol. 2016;1402:271–286. doi:10.1007/978-1-4939-3378-5_21.
  • Zhang XY, Dong XM, Wang FP. miR-377-3p inhibits cell metastasis and epithelial-mesenchymal transition in cervical carcinoma through targeting SGK3. Eur Rev Med Pharmacol Sci. 2020;24:4687–4696.
  • Huang L, Liu Z, Hu J, Luo Z, Zhang C, Wang L, Wang Z. miR-377-3p suppresses colorectal cancer through negative regulation on Wnt/β-catenin signaling by targeting XIAP and ZEB2. Pharmacol Res. 2020;156:104774. doi:10.1016/j.phrs.2020.104774.
  • Tang L, Yang B, Cao X, Li Q, Jiang L, Wang D. MicroRNA-377-3p inhibits growth and invasion through sponging JAG1 in ovarian cancer. Genes Genomics. 2019;41:919–926. doi:10.1007/s13258-019-00822-w.
  • Wang H, Wei Z, Li H, Guan Y, Han Z, Wang H, Liu B. miR-377-3p inhibits atherosclerosis-associated vascular smooth muscle cell proliferation and migration via targeting neuropilin2. Biosci Rep. 2020;40:BSR20193425.
  • Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351–379. doi:10.1146/annurev-biochem-060308-103103.
  • Exposito JY, Valcourt U, Cluzel C, Lethias C. The fibrillar collagen family. IJMS. 2010;11:407–426. doi:10.3390/ijms11020407.
  • Wernecke L, Keckeis S, Reichhart N, Strauß O, Salchow DJ. Epithelial-mesenchymal transdifferentiation in pediatric lens epithelial cells. Invest Ophthalmol Vis Sci. 2018;59:5785–5794. doi:10.1167/iovs.18-23789.
  • Ling J, Tan K, Lu L, Yang F, Luan L. lncRNA MIAT increases cell viability, migration, EMT and ECM production in age-related cataracts by regulating the miR-181a/CTGF/ERK signaling pathway. Exp Ther Med. 2020;20:1053–1063. doi:10.3892/etm.2020.8749.
  • Lovicu FJ, Shin EH, McAvoy JW. Fibrosis in the lens. Sprouty regulation of TGFβ-signaling prevents lens EMT leading to cataract. Exp Eye Res. 2016;142:92–101. doi:10.1016/j.exer.2015.02.004.
  • Chen X, Xiao W, Chen W, Liu X, Wu M, Bo Q, Luo Y, Ye S, Cao Y, Liu Y. MicroRNA-26a and -26b inhibit lens fibrosis and cataract by negatively regulating Jagged-1/Notch signaling pathway. Cell Death Differ. 2017;24:1431–1442. doi:10.1038/cdd.2016.152.
  • Meng Q, Guo H, Xiao L, Cui Y, Guo R, Xiao D, Huang Y. mTOR regulates TGF-β2-induced epithelial-mesenchymal transition in cultured human lens epithelial cells. Graefes Arch Clin Exp Ophthalmol. 2013;251(10):2363–2370. doi:10.1007/s00417-013-2435-z.
  • Zhang Z, Zhu H, Liu Y, Quan F, Zhang X, Yu L. LncRNA HOTAIR mediates TGF-β2-induced cell growth and epithelial-mesenchymal transition in human lens epithelial cells. Acta Biochim Biophys Sin. 2018;50:1028–1037. doi:10.1093/abbs/gmy101.
  • Wang Y, Chen L, Gu Y, Wang Y, Yuan Y, Zhu Q, Bi M, Gu S. LncRNA FEZF1-AS1 promotes TGF-β2-mediated proliferation and migration in human lens epithelial cells SRA01/04. J Ophthalmol. 2019;2019:4736203. doi:10.1155/2019/4736203.
  • Liu WH, Yuan JB, Zhang F, Chang JX. Curcumin inhibits proliferation, migration and invasion of gastric cancer cells via Wnt3a/β-catenin/EMT signaling pathway. Zhongguo Zhong Yao Za Zhi. 2019;44:3107–3115.
  • Huang T, Chen Z, Fang L. Curcumin inhibits LPS-induced EMT through downregulation of NF-κB-Snail signaling in breast cancer east cancer cells. Oncol Rep. 2013;29:117–124. doi:10.3892/or.2012.2080.
  • Sun XD, Liu XE, Huang DS. Curcumin reverses the epithelial-mesenchymal transition of pancreatic cancer cells by inhibiting the Hedgehog signaling pathway. Oncol Rep. 2013;29:2401–2407. doi:10.3892/or.2013.2385.
  • Hu YH, Huang XR, Qi MX, Hou BY. Curcumin inhibits proliferation of human lens epithelial cells: a proteomic analysis. J Zhejiang Univ Sci B. 2012;13:402–407. doi:10.1631/jzus.B1100278.
  • Chan JJ, Tay Y. Noncoding RNA: RNA regulatory networks in cancer. IJMS. 2018;19:1310. doi:10.3390/ijms19051310.
  • Zhao H, Diao C, Wang X, Xie Y, Liu Y, Gao X, Han J, Li S. LncRNA BDNF-AS inhibits proliferation, migration, invasion and EMT in oesophageal cancer cells by targeting miR-214. J Cell Mol Med. 2018;22:3729–3739. doi:10.1111/jcmm.13558.
  • Lei H, Gao Y, Xu X. LncRNA TUG1 influences papillary thyroid cancer cell proliferation, migration and EMT formation through targeting miR-145. Acta Biochim Biophys Sin. 2017;49:588–597. doi:10.1093/abbs/gmx047.
  • Zhao W, Geng D, Li S, Chen Z, Sun M. LncRNA HOTAIR influences cell growth, migration, invasion, and apoptosis via the miR-20a-5p/HMGA2 axis in breast cancer. Cancer Med. 2018;7:842–855. doi:10.1002/cam4.1353.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.