1,493
Views
1
CrossRef citations to date
0
Altmetric
Cornea

Elevated Levels of Interleukins, Leukocyte Protein and Cathelicidin Antimicrobial Peptide are Strongly Associated with Early to Mid-Stage of Pythium insidiosum Infection in Rabbit Corneas

ORCID Icon &
Pages 677-687 | Received 11 Jun 2021, Accepted 21 Dec 2021, Published online: 22 Mar 2022

References

  • Tondolo JSM, Loreto ÉS, Ledur PC, Jesus FPK, Silva TM, Kommers GD, Alves SH, Santurio JM. Chemically induced disseminated pythiosis in BALB/c mice: a new experimental model for Pythium insidiosum infection. PLoS One. 2017;12:e0177868. doi:10.1371/journal.pone.0177868.
  • Krajaejun T, Sathapatayavongs B, Pracharktam R, Nitiyanant P, Leelachaikul P, Wanachiwanawin W, Chaiprasert A, Assanasen P, Saipetch M, Mootsikapun P, et al. Clinical and epidemiological analyses of human pythiosis in Thailand. Clin Infect Dis. 2006;43:569–576. doi:10.1086/506353.
  • Mendoza L, Newton JC. Immunology and immunotherapy of the infections caused by Pythium insidiosum. Med Mycol. 2005;43:477–486. doi:10.1080/13693780500279882.
  • Loreto S, Tondolo JS, Zanette RA, Alves SH, Santurio JM. Update on pythiosis immunobiology and immunotherapy. WJI. 2014;4:88–97. doi:10.5411/wji.v4.i2.88.
  • Ledur PC, Tondolo JSM, Jesus FPK, Verdi CM, Loreto ÉS, Alves SH, Santurio JM. Dendritic cells pulsed with Pythium insidiosum (1,3)(1,6)-β-glucan, heat-inactivated zoospores and immunotherapy prime naïve T cells to Th1 differentiation in vitro. Immunobiology. 2018;223:294–299. doi:10.1016/j.imbio.2017.10.033.
  • Permpalung N, Worasilchai N, Plongla R, Upala S, Sanguankeo A, Paitoonpong L, Mendoza L, Chindamporn A. Treatment outcomes of surgery, antifungal therapy and immunotherapy in ocular and vascular human pythiosis: a retrospective study of 18 patients. J Antimicrob Chemother. 2015;70:1885–1892. doi:10.1093/jac/dkv008.
  • Wongprompitak P, Pleewan N, Tantibhedhyangkul W, Chaiprasert A, Prabhasawat P, Inthasin N, Ekpo P. Involvement of toll-like receptor 2 on human corneal epithelium during an infection of Pythium insidiosum. Asian Pac J Allergy Immunol. 2020;38:129–138. doi:10.12932/AP-110518-0311.
  • Abdelfattah NS, Amgad M, Zayed AA. Host immune cellular reactions in corneal neovascularization. Int J Ophthalmol. 2016;9:625–633. doi:10.18240/ijo.2016.04.25.
  • Conti HR, Gaffen SL. IL-17-mediated immunity to the opportunistic fungal pathogen Candida albicans. J Immunol. 2015 195:780–788. doi:10.4049/jimmunol.1500909.
  • Tondolo JSM, Ledur PC, Loreto ÉS, Verdi CM, Bitencourt PER, de Jesus FPK, Rocha JP, Alves SH, Sassaki GL, Santurio JM.. Extraction, characterization and biological activity of a (1,3)(1,6)-β-d-glucan from the pathogenic oomycete Pythium insidiosum. Carbohydr Polym. 2017;157:719–727. doi:10.1016/j.carbpol.2016.10.053.
  • Kalra P, Ahirwar LK, Mittal R, Ranjith K, Das S, Manjulatha K, Bagga B, Mohamed A, Joseph J, Sharma S. Clinical and histopathological evaluation of a rabbit model for Pythium insidiosum keratitis. Curr Eye Res. 2020;45:542–549. doi:10.1080/02713683.2019.1676911.
  • Tamassia N, Bianchetto-Aguilera F, Arruda-Silva F, Gardiman E, Gasperini S, Calzetti F, Cassatella MA. Cytokine production by human neutrophils: revisiting the "dark side of the moon". Eur J Clin Invest. 2018;48 (Suppl 2):e12952. doi:10.1111/eci.12952.
  • Kumar A, Yin J, Zhang J, Yu FS. Modulation of corneal epithelial innate immune response to pseudomonas infection by flagellin pretreatment. Invest Ophthalmol Vis Sci. 2007;48:4664–4670. doi:10.1167/iovs.07-0473.
  • Sharma P, Guha S, Garg P, Roy S. Differential expression of antimicrobial peptides in corneal infection and regulation of antimicrobial peptides and reactive oxygen species by type III secretion system of Pseudomonas aeruginosa. Pathog Dis. 2018;76: fty001. doi:10.1093/femspd/fty001.
  • Zarember K, Elsbach P, Shin-Kim K, Weiss J. p15s (15-kD antimicrobial proteins) are stored in the secondary granules of rabbit granulocytes: implications for antibacterial synergy with the bactericidal/permeability-increasing protein in inflammatory fluids. Blood. 1997;89:672–679.
  • Shang Y, Ren F, Song Z, Li Q, Zhou X, Wang X, Xu Z, Bao G, Wan T, Lei T, et al. Insights into Campylobacter jejuni colonization and enteritis using a novel infant rabbit model. Sci Rep. 2016;6:28737. doi:10.1038/srep28737.
  • Schnupf P, Sansonetti PJ. Quantitative RT-PCR profiling of the rabbit immune response: assessment of acute Shigella flexneri infection. PLoS One. 2012;7:e36446. doi:10.1371/journal.pone.0036446.
  • Esteves PJ, Abrantes J, Baldauf HM, BenMohamed L, Chen Y, Christensen N, González-Gallego J, Giacani L, Hu J, Kaplan G, et al. The wide utility of rabbits as models of human diseases. Exp Mol Med. 2018;50:1–10. doi:10.1038/s12276-018-0094-1.
  • Jin X, Qin Q, Tu L, Zhou X, Lin Y, Qu J. Toll-like receptors (TLRs) expression and function in response to inactivate hyphae of Fusarium solani in immortalized human corneal epithelial cells. Mol Vis. 2007;13:1953–1961.
  • Guo H, Wu X. 2009. Innate responses of corneal epithelial cells against Aspergillus fumigatus challenge. FEMS Immunol Med Microbiol. 56:88–93. doi:10.1111/j.1574-695X.2009.00551.x.
  • Hua X, Yuan X, Li Z, Coursey TG, Pflugfelder SC, Li DQ. A novel innate response of human corneal epithelium to heat-killed Candida albicans by producing peptidoglycan recognition proteins. PLoS One. 2015;10:e0128039. doi:10.1371/journal.pone.0128039.
  • Figueiredo RT, Carneiro LA, Bozza MT. Fungal surface and innate immune recognition of filamentous fungi. Front Microbiol. 2011;2:248. doi:10.3389/fmicb.2011.00248.
  • Li C, Zhao GQ, Che CY, Li N, Lin J, Xu Q, Wang Q, Liu Y, Qiu S. Expression of dectin-1 during fungus infection in human corneal epithelial cells. Int J Ophthalmol. 2014;7:34–37. doi:10.3980/j.issn.2222-3959.2014.01.06.
  • Mendoza L, Prendas J. A method to obtain rapid zoosporogenesis of Pythium insidiosum. Mycopathologia. 1988;104:59–62. doi:10.1007/BF00437925.
  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D613. doi:10.1093/nar/gky1131.
  • Roy S, Marla S, Praneetha DC. Recognition of Corynebacterium pseudodiphtheriticum by toll-like receptors and up-regulation of antimicrobial peptides in human corneal epithelial cells. Virulence. 2015;6:716–721. doi:10.1080/21505594.2015.1066063.
  • Hasika R, Lalitha P, Radhakrishnan N, Rameshkumar G, Prajna NV, Srinivasan M. Pythium keratitis in South India: incidence, clinical profile, management, and treatment recommendation. Indian J Ophthalmol. 2019;67:42–47. doi:10.4103/ijo.IJO_445_18.
  • Zarember KA, Katz SS, Tack BF, Doukhan L, Weiss J, Elsbach P. Host defense functions of proteolytically processed and parent (unprocessed) cathelicidins of rabbit granulocytes. Infect Immun. 2002;70:569–576. doi:10.1128/IAI.70.2.569-576.2002.
  • Kuroda K, Okumura K, Isogai H, Isogai E. The human cathelicidin antimicrobial peptide LL-37 and mimics are potential anticancer drugs. Front Oncol. 2015;5:144. doi:10.3389/fonc.2015.00144.
  • Dürr UH, Sudheendra US, Ramamoorthy A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta. 2006;1758:1408–1425. doi:10.1016/j.bbamem.2006.03.030.
  • Kościuczuk EM, Lisowski P, Jarczak J, Strzałkowska N, Jóźwik A, Horbańczuk J, Krzyżewski J, Zwierzchowski L, Bagnicka E. Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep. 2012;39:10957–10970. doi:10.1007/s11033-012-1997-x.
  • Zhang Y, Liang Q, Liu Y, Pan Z, Baudouin C, Labbé A, Lu Q. Expression of cytokines in aqueous humor from fungal keratitis patients. BMC Ophthalmol. 2018;18:105. doi:10.1186/s12886-018-0754-x.
  • Levy O, Ooi CE, Weiss J, Lehrer RI, Elsbach P. 1994. Individual and synergistic effects of rabbit granulocyte proteins on Escherichia coli. J Clin Invest. 94:672–682. doi:10.1172/JCI117384.
  • Bickel M. The role of interleukin-8 in inflammation and mechanisms of regulation. J Periodontol. 1993;64:456–460.
  • Hammond ME, Lapointe GR, Feucht PH, Hilt S, Gallegos CA, Gordon CA, Giedlin MA, Mullenbach G, Tekamp-Olson P. IL-8 induces neutrophil chemotaxis predominantly via type I IL-8 receptors. J Immunol. 1995;155:1428–1433.
  • Moqbel R, Levi-Schaffer F, Kay AB. Cytokine generation by eosinophils. J Allergy Clin Immunol. 1994;94(6 Pt 2):1183–1188. doi:10.1016/0091-6749(94)90330-1.
  • Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–820. doi:10.1016/j.cell.2010.01.022.
  • Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461. doi:10.3389/fimmu.2014.00461.
  • Roeder A, Kirschning CJ, Rupec RA, Schaller M, Weindl G, Korting HC. Toll-like receptors as key mediators in innate antifungal immunity. Med Mycol. 2004;42:485–498. doi:10.1080/13693780400011112.
  • Xiao T, Yan Z, Xiao S, Xia Y. Proinflammatory cytokines regulate epidermal stem cells in wound epithelialization. Stem Cell Res Ther. 2020;11:232. doi:10.1186/s13287-020-01755-y.
  • Batlle E, Massagué J. Transforming growth factor-β signaling in immunity and cancer. Immunity. 2019;50:924–940. doi:10.1016/j.immuni.2019.03.024.
  • Sanjabi S, Oh SA, Li MO. Regulation of the immune response by TGF-β: from conception to autoimmunity and infection. Cold Spring Harb Perspect Biol. 2017;9:a022236. doi:10.1101/cshperspect.a022236.
  • Parks OB, Pociask DA, Hodzic Z, Kolls JK, Good M. Interleukin-22 signaling in the regulation of intestinal health and disease. Front Cell Dev Biol. 2015;3:85. doi:10.3389/fcell.2015.00085.
  • Li J, Zhang Y, Yang C, Rong R. Discrepant mRNA and protein expression in immune cells. Curr Genomics. 2020;21:560–563. doi:10.2174/1389202921999200716103758.
  • Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet. 2012;13:227–232. doi:10.1038/nrg3185.
  • Bar A, Striem S, Vax E, Talpaz H, Hurwitz S. Regulation of calbindin mRNA and calbindin turnover in intestine and shell gland of the chicken. Am J Physiol. 1992;262:R800–5. doi:10.1152/ajpregu.1992.262.5.R800.