156
Views
3
CrossRef citations to date
0
Altmetric
Lens

Interfering Hsa_circRNA_0060640 Suppresses TGF-β2-Induced Proliferation, Motility and EMT in Human Lens Epithelium Cells by Targeting miR-214-3p and Collagen Type I alpha2 Chain

, , &
Pages 735-746 | Received 09 Nov 2021, Accepted 11 Mar 2022, Published online: 07 Apr 2022

References

  • Zhang C, Hu J, Yu Y. CircRNA is a rising star in researches of ocular diseases. Front Cell Dev Biol. 2020;8:850.
  • Liang S, Dou S, Li W, Huang Y. Profiling of circular RNAs in age-related cataract reveals circZNF292 as an antioxidant by sponging miR-23b-3p. Aging. 2020;12(17):17271–17287. doi:10.18632/aging.103683.
  • Fan C, Liu X, Li W, Wang H, Teng Y, Ren J, Huang Y. Circular RNA circ KMT2E is up-regulated in diabetic cataract lenses and is associated with miR-204-5p sponge function. Gene. 2019;710:170–177. doi:10.1016/j.gene.2019.05.054.
  • de Silva SR, Riaz Y, Evans JR. Phacoemulsification with posterior chamber intraocular lens versus extracapsular cataract extraction (ECCE) with posterior chamber intraocular lens for age-related cataract. Cochrane Database Syst Rev. 2014;2014(1):CD008812.
  • Wang J, Zhang J, Xiong Y, Li J, Li X, Zhao J, Zhu G, He H, Mayinuer Y, Wan X. TGF-β regulation of microRNA miR-497-5p and ocular lens epithelial cell mesenchymal transition . Sci China Life Sci. 2020;63(12):1928–1937. doi:10.1007/s11427-019-1603-y.
  • Martinez G, de Iongh RU. The lens epithelium in ocular health and disease. Int J Biochem Cell Biol. 2010;42(12):1945–1963. doi:10.1016/j.biocel.2010.09.012.
  • Lovicu FJ, Shin EH, McAvoy JW. Fibrosis in the lens. Sprouty regulation of TGFβ-signaling prevents lens EMT leading to cataract. Exp Eye Res. 2016;142:92–101. doi:10.1016/j.exer.2015.02.004.
  • Wernecke L, Keckeis S, Reichhart N, Strauß O, Salchow DJ. Epithelial-mesenchymal transdifferentiation in pediatric lens epithelial cells. Invest Ophthalmol Vis Sci. 2018;59(15):5785–5794. doi:10.1167/iovs.18-23789.
  • Luo Y, Liu S, Yao K. Transcriptome-wide investigation of mRNA/circRNA in miR-184 and Its r.57c > u mutant type treatment of human lens epithelial cells. Mol Ther Nucleic Acids. 2017;7:71–80. doi:10.1016/j.omtn.2017.02.008.
  • Zhang Y, Cai S, Jia Y, Qi C, Sun J, Zhang H, Wang F, Cao Y, Li X. Decoding noncoding RNAs: role of microRNAs and long noncoding RNAs in ocular neovascularization. Theranostics. 2017;7(12):3155–3167. doi:10.7150/thno.19646.
  • Saika S. TGFbeta pathobiology in the eye. Lab Invest. 2006;86(2):106–115. doi:10.1038/labinvest.3700375.
  • Kubo E, Shibata T, Singh DP, Sasaki H. Roles of TGF beta and FGF signals in the lens: tropomyosin regulation for posterior capsule opacity. Int J Mol Sci. 2018;19(10):3093. doi:10.3390/ijms19103093.
  • de Iongh RU, Wederell E, Lovicu FJ, McAvoy JW. Transforming growth factor-beta-induced epithelial-mesenchymal transition in the lens: a model for cataract formation. Cells Tissues Organs. 2005;179(1–2):43–55. doi:10.1159/000084508.
  • Rosen SD, Lemjabbar-Alaoui H. Sulf-2: an extracellular modulator of cell signaling and a cancer target candidate. Expert Opin Ther Targets. 2010;14(9):935–949. doi:10.1517/14728222.2010.504718.
  • Cui G, Wang L, Huang W. Circular RNA HIPK3 regulates human lens epithelial cell dysfunction by targeting the miR-221-3p/PI3K/AKT pathway in age-related cataract. Exp Eye Res. 2020;198:108128. doi:10.1016/j.exer.2020.108128.
  • Sun Y, Kuek V, Liu Y, Tickner J, Yuan Y, Chen L, Zeng Z, Shao M, He W, Xu J. MiR-214 is an important regulator of the musculoskeletal metabolism and disease. J Cell Physiol. 2018;234(1):231–245. doi:10.1002/jcp.26856.
  • Zhao Y, Ponnusamy M, Zhang L, Zhang Y, Liu C, Yu W, Wang K, Li P. The role of miR-214 in cardiovascular diseases. Eur J Pharmacol. 2017;816:138–145. doi:10.1016/j.ejphar.2017.08.009.
  • Penna E, Orso F, Taverna D. miR-214 as a key hub that controls cancer networks: small player, multiple functions. J Invest Dermatol. 2015;135(4):960–969. doi:10.1038/jid.2014.479.
  • Jin X, Jin H, Shi Y, Guo Y, Zhang H. Long non-coding RNA KCNQ1OT1 promotes cataractogenesis via miR-214 and activation of the caspase-1 pathway. Cell Physiol Biochem. 2017;42(1):295–305. doi:10.1159/000477330.
  • Huang J, Chen Z, Lai Z, Liu Y, Yu D, Wu L, Zhou X. Kaempferol ameliorates the regulatory effects of PVT1/miR-214 on epithelial-mesenchymal transition through the PAK4/β-catenin axis in SRA01/04 cells. Future Med Chem. 2021;13(7):613–623. doi:10.4155/fmc-2020-0381.
  • Van Looveren J, Van Gerwen V, Schildermans K, Laukens K, Baggerman G, Tassignon MJ. Proteomic analysis of posterior capsular plaques in congenital unilateral cataract. Acta Ophthalmol. 2018;96(8):e963–e969. doi:10.1111/aos.13782.
  • Shimada A, Miyata Y, Kosano H. Type I collagen accelerates the spreading of lens epithelial cells through the expression and activation of matrix metalloproteinases. Curr Eye Res. 2014;39(5):460–471. doi:10.3109/02713683.2013.853194.
  • Li J, Tang X, Chen X. Comparative effects of TGF-β2/Smad2 and TGF-β2/Smad3 signaling pathways on proliferation, migration, and extracellular matrix production in a human lens cell line. Exp Eye Res. 2011;92(3):173–179. doi:10.1016/j.exer.2011.01.009.
  • Suzuki H, Tsukahara T. A view of pre-mRNA splicing from RNase R resistant RNAs. Int J Mol Sci. 2014;15(6):9331–9342. doi:10.3390/ijms15069331.
  • Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K, Li H. Circular RNA: a new star of noncoding RNAs. Cancer Lett. 2015;365(2):141–148. doi:10.1016/j.canlet.2015.06.003.
  • Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(Database issue):D92–D97. doi:10.1093/nar/gkt1248.
  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–388. doi:10.1038/nature11993..
  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–338. doi:10.1038/nature11928.
  • Cui X, Wang J, Guo Z, Li M, Li M, Liu S, Liu H, Li W, Yin X, Tao J, et al. Emerging function and potential diagnostic value of circular RNAs in cancer. Mol Cancer. 2018;17(1):123. doi:10.1186/s12943-018-0877-y.
  • Liu Y, Chen T, Zheng G. Exosome-transmitted circ-CARD6 facilitates posterior capsule opacification development by miR-31/FGF7 axis. Exp Eye Res. 2021;207:108572. doi:10.1016/j.exer.2021.108572.
  • Liu J, Dong Y, Ji Q, Wen Y, Ke G, Shi L, Guan W, Xu W. Circ-MKLN1/miR-377-3p/CTGF axis regulates the TGF-beta2-induced posterior capsular opacification in SRA01/04 cells. Curr Eye Res. 2021;1–10. doi:10.1080/02713683.2021.1988983.
  • Liu X, Liu B, Zhou M, Fan F, Yu M, Gao C, Lu Y, Luo Y. Circular RNA HIPK3 regulates human lens epithelial cells proliferation and apoptosis by targeting the miR-193a/CRYAA axis. Biochem Biophys Res Commun. 2018;503(4):2277–2285. doi:10.1016/j.bbrc.2018.06.149.
  • Yang J, Zhao S, Tian F. SP1-mediated lncRNA PVT1 modulates the proliferation and apoptosis of lens epithelial cells in diabetic cataract via miR-214-3p/MMP2 axis. J Cell Mol Med. 2020;24(1):554–561. doi:10.1111/jcmm.14762.
  • Meng L, Zheng Y, Liu S, Ju Y, Ren S, Sang Y, Zhu Y, Gu L, Liu F, Zhao Y, et al. ZEB1 represses biogenesis of circ-DOCK5 to facilitate metastasis in esophageal squamous cell carcinoma via a positive feedback loop with TGF-β. Cancer Lett. 2021;519:117–129. doi:10.1016/j.canlet.2021.06.026.
  • Zhao W, Cui Y, Liu L, Qi X, Liu J, Ma S, Hu X, Zhang Z, Wang Y, Li H, et al. Splicing factor derived circular RNA circUHRF1 accelerates oral squamous cell carcinoma tumorigenesis via feedback loop. Cell Death Differ. 2020;27(3):919–933. doi:10.1038/s41418-019-0423-5.
  • Carrington LM, Albon J, Anderson I, Kamma C, Boulton M. Differential regulation of key stages in early corneal wound healing by TGF-beta isoforms and their inhibitors. Invest Ophthalmol Vis Sci. 2006;47(5):1886–1894. doi:10.1167/iovs.05-0635.
  • Angunawela RI, Marshall J. Inhibition of transforming growth factor-beta1 and its effects on human corneal fibroblasts by mannose-6-phosphate potential for preventing haze after refractive surgery. J Cataract Refract Surg. 2010;36(1):121–126. doi:10.1016/j.jcrs.2009.07.042.
  • Zhang Y, Huang W. Transforming growth factor β1 (TGF-β1)-stimulated integrin-linked kinase (ILK) regulates migration and epithelial-mesenchymal transition (EMT) of human lens epithelial cells via nuclear factor κB (NF-κB). Med Sci Monit. 2018;24:7424–7430. doi:10.12659/MSM.910601.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.