1,486
Views
7
CrossRef citations to date
0
Altmetric
Reviews

In Vivo Corneal Stiffness Mapping by the Stress-Strain Index Maps and Brillouin Microscopy

&
Pages 114-120 | Received 07 Jan 2022, Accepted 17 May 2022, Published online: 30 May 2022

References

  • Lopes BT, Bao F, Wang J, Liu X, Wang L, Abass A, Eliasy A, Elsheikh A. Review of in-vivo characterisation of corneal biomechanics. Med Novel Technol Dev. 2021;11:100073. doi:10.1016/j.medntd.2021.100073.
  • Koudouna E, Winkler M, Mikula E, Juhasz T, Brown DJ, Jester JV. Evolution of the vertebrate corneal stroma. Prog Retin Eye Res. 2018;64:65–76. doi:10.1016/j.preteyeres.2018.01.002.
  • Meek KM, Knupp C. Corneal structure and transparency. Prog Retin Eye Res. 2015;49:1–16. doi:10.1016/j.preteyeres.2015.07.001.
  • Bergmanson JP, Horne J, Doughty MJ, Garcia M, Gondo M. Assessment of the number of lamellae in the central region of the normal human corneal stroma at the resolution of the transmission electron microscope. Eye Contact Lens. 2005;31(6):281–287. doi:10.1097/01.icl.0000165280.94927.0d.
  • Meek KM. Corneal collagen-its role in maintaining corneal shape and transparency. Biophys Rev. 2009;1(2):83–93. doi:10.1007/s12551-009-0011-x.
  • Meek KM, Boote C. The use of x-ray scattering techniques to quantify the orientation and distribution of collagen in the corneal stroma. Prog Retin Eye Res. 2009;28(5):369–392. doi:10.1016/j.preteyeres.2009.06.005.
  • Roberts CJ, Dupps WJ. Jr. Biomechanics of corneal ectasia and biomechanical treatments. J Cataract Refract Surg. 2014;40(6):991–998. doi:10.1016/j.jcrs.2014.04.013.
  • Mas Tur V, MacGregor C, Jayaswal R, O'Brart D, Maycock N. A review of keratoconus: diagnosis, pathophysiology, and genetics. Surv Ophthalmol. 2017;62(6):770–783. doi:10.1016/j.survophthal.2017.06.009.
  • Esporcatte LPG, Salomao MQ, Lopes BT, Vinciguerra P, Vinciguerra R, Roberts C, Elsheikh A, Dawson DG, Ambrosio R. Jr. Biomechanical diagnostics of the cornea. Eye Vis. 2020;7(9):28.
  • Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31(1):156–162. doi:10.1016/j.jcrs.2004.10.044.
  • Ambrósio R, Jr Ramos I, Luz A, Faria FC, Steinmueller A, Krug M, Belin MW, Roberts CJ. Dynamic ultra high speed scheimpflug imaging for assessing corneal biomechanical properties. Rev Brasoftalmol. 2013;72(2):99–102. doi:10.1590/S0034-72802013000200005.
  • Scarcelli G, Yun SH. Confocal brillouin microscopy for three-dimensional mechanical imaging. Nat Photonics. 2007;2(1):39–43. doi:10.1038/nphoton.2007.250.
  • Zhang H, Eliasy A, Lopes B, Abass A, Vinciguerra R, Vinciguerra P, Ambrosio R, Jr., Roberts CJ, Elsheikh A. Stress-strain index map: a new way to represent corneal material stiffness. Front Bioeng Biotechnol. 2021;9:640434–640434.
  • Eliasy A, Chen KJ, Vinciguerra R, Lopes BT, Abass A, Vinciguerra P, Ambrosio R, Jr., Roberts CJ, Elsheikh A. Determination of corneal biomechanical behavior in-vivo for healthy eyes using corvis st tonometry: stress-strain index. Front Bioeng Biotechnol. 2019;(7):105.
  • Vinciguerra R, Ambrosio R, Jr., Elsheikh A, Roberts CJ, Lopes B, Morenghi E, Azzolini C, Vinciguerra P. Detection of keratoconus with a new biomechanical index. J Refract Surg. 2016;32(12):803–810. doi:10.3928/1081597X-20160629-01.
  • Padmanabhan P, Lopes BT, Eliasy A, Abass A, Vinciguerra R, Vinciguerra P, Ambrosio R, Jr., Elsheikh A. Evaluation of corneal biomechanical behavior in-vivo for healthy and keratoconic eyes using the stress-strain index. J Cataract Refract Surg. 2022;2022:945. doi:10.1097/j.jcrs.0000000000000945.
  • Padmanabhan P, Lopes BT, Eliasy A, Abass A, Elsheikh A. In vivo biomechanical changes associated with keratoconus progression. Curr Eye Res. 2022;2022:1–5. doi:10.1080/02713683.2022.2058020.
  • Zhou D, Eliasy A, Abass A, Markov P, Whitford C, Boote C, Movchan A, Movchan N, Elsheikh A. Analysis of x-ray scattering microstructure data for implementation in numerical simulations of ocular biomechanical behaviour. PLoS One. 2019;14(4):e0214770. doi:10.1371/journal.pone.0214770.
  • Boote C, Dennis S, Newton RH, Puri H, Meek KM. Collagen fibrils appear more closely packed in the prepupillary cornea: optical and biomechanical implications. Invest Ophthalmol Vis Sci. 2003;44(7):2941–2948. doi:10.1167/iovs.03-0131.
  • Boote C, Hayes S, Abahussin M, Meek KM. Mapping collagen organization in the human cornea: left and right eyes are structurally distinct. Invest Ophthalmol Vis Sci. 2006;47(3):901–908. doi:10.1167/iovs.05-0893.
  • Zhou D, Abass A, Lopes B, Eliasy A, Hayes S, Boote C, Meek KM, Movchan A, Movchan N, Elsheikh A. Fibril density reduction in keratoconic corneas. J R Soc Interface. 2021;18(175):20200900.
  • Hayes S, Boote C, Tuft SJ, Quantock AJ, Meek KM. A study of corneal thickness, shape and collagen organisation in keratoconus using videokeratography and x-ray scattering techniques. Exp Eye Res. 2007;84(3):423–434. doi:10.1016/j.exer.2006.10.014.
  • Eliasy A, Abass A, Lopes BT, Vinciguerra R, Zhang H, Vinciguerra P, Ambrosio R, Jr., Roberts CJ, Elsheikh A. Characterization of cone size and centre in keratoconic corneas. J R Soc Interface. 2020;17(169):20200271. doi:10.1098/rsif.2020.0271.
  • Lopes B, Padmanabhan P, Zhang H, Abass A, Eliasy A, Bandeira F, Bao F, Bühren J, Elmassry A, Faria-Correia F, et al. Clinical validation of the automated characterization of cone size and center in keratoconic corneas. J Refract Surg. 2021;37(6):414–421. doi:10.3928/1081597X-20210315-03.
  • Brillouin L. Diffusion de la lumière et des rayons x par un corps transparent homogène: influence de l'agitation thermique. Ann Phys. 1922;9(17):88–122. doi:10.1051/anphys/192209170088.
  • Scarcelli G, Pineda R, Yun SH. Brillouin optical microscopy for corneal biomechanics. Invest Ophthalmol Vis Sci. 2012;53(1):185–190. doi:10.1167/iovs.11-8281.
  • Harley R, James D, Miller A, White JW. Phonons and the elastic moduli of collagen and muscle. Nature. 1977;267(5608):285–287. doi:10.1038/267285a0.
  • Randall JT, Vaughan JM. Brillouin scattering in systems of biological significance. Philo Trans Royal Soc London. 1979;293(1402):341–348.
  • Randall J, Vaughan JM. The measurement and interpretation of brillouin scattering in the lens of the eye. Proc R Soc Lond B Biol Sci. 1982;214(1197):449–470. doi:10.1098/rspb.1982.0021.
  • Vaughan JM, Randall JT. Brillouin scattering, density and elastic properties of the lens and cornea of the eye. Nature. 1980;284(5755):489–491. doi:10.1038/284489a0.
  • Webb JN, Su JP, Scarcelli G. Mechanical outcome of accelerated corneal crosslinking evaluated by Brillouin microscopy. J Cataract Refract Surg. 2017;43(11):1458–1463. doi:10.1016/j.jcrs.2017.07.037.
  • Scarcelli G, Besner S, Pineda R, Yun SH. Biomechanical characterization of keratoconus corneas ex vivo with brillouin microscopy. Invest Ophthalmol Vis Sci. 2014;55(7):4490–4495. doi:10.1167/iovs.14-14450.
  • Scarcelli G, Besner S, Pineda R, Kalout P, Yun SH. In vivo biomechanical mapping of normal and keratoconus corneas. JAMA Ophthalmol. 2015;133(4):480–480. doi:10.1001/jamaophthalmol.2014.5641.
  • Shao P, Eltony AM, Seiler TG, Tavakol B, Pineda R, Koller T, Seiler T, Yun SH. Spatially-resolved brillouin spectroscopy reveals biomechanical abnormalities in mild to advanced keratoconus in vivo. Sci Rep. 2019;9(1):1–12. doi:10.1038/s41598-019-43811-5.
  • Seiler TG, Shao P, Frueh BE, Yun SH, Seiler T. The influence of hydration on different mechanical moduli of the cornea. Graefe’s Archive for. Graefes Arch Clin Exp Ophthalmol. 2018;256(9):1653–1660. doi:10.1007/s00417-018-4069-7.
  • Shao P, Seiler TG, Eltony AM, Ramier A, Kwok SJJ, Scarcelli G, Ii RP, Yun SH. Effects of corneal hydration on brillouin microscopy in vivo. Invest Ophthalmol Vis Sci. 2018;59(7):3020–3027. doi:10.1167/iovs.18-24228.
  • Seiler TG, Shao P, Eltony A, Seiler T, Yun S-H. Brillouin spectroscopy of normal and keratoconus corneas. Am J Ophthalmol. 2019;202:118–125. doi:10.1016/j.ajo.2019.02.010.
  • Scarcelli G, Kling S, Quijano E, Pineda R, Marcos S, Yun SH. Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus. Invest Ophthalmol Vis Sci. 2013;54(2):1418–1425. doi:10.1167/iovs.12-11387.
  • Webb JN, Langille E, Hafezi F, Randleman JB, Scarcelli G. Biomechanical impact of localized corneal cross-linking beyond the irradiated treatment area. J Refract Surg. 2019;35(4):253–260. doi:10.3928/1081597X-20190304-01.
  • Shao P, Eltony AM, Seiler TG, Tavakol B, Pineda R, Koller T, Seiler T, Yun S-H. Spatially-resolved brillouin spectroscopy reveals biomechanical changes in early ectatic corneal disease and post-crosslinking in vivo. arXiv e-prints 2018: arXiv:1802.01055-arXiv:01802.01055.
  • Roberts C. The cornea is not a piece of plastic. J Refract Surg. 2000;16(4):407–413. doi:10.3928/1081-597X-20000701-03.
  • Yun SH, Chernyak D. Brillouin microscopy: assessing ocular tissue biomechanics. Curr Opin Ophthalmol. 2018;29(4):299–305. doi:10.1097/ICU.0000000000000489.
  • Scarcelli G, Kim P, Yun SH. In vivo measurement of age-related stiffening in the crystalline lens by brillouin optical microscopy. Biophys J. 2011;101(6):1539–1545. doi:10.1016/j.bpj.2011.08.008.
  • Beshtawi IM, Akhtar R, Hillarby MC, O’Donnell C, Zhao X, Brahma A, Carley F, Derby B, Radhakrishnan H. Scanning acoustic microscopy for mapping the microelastic properties of human corneal tissue. Curr Eye Res. 2013;38(4):437–444. doi:10.3109/02713683.2012.753094.
  • Nguyen TM, Aubry JF, Fink M, Bercoff J, Tanter M. In vivo evidence of porcine cornea anisotropy using supersonic shear wave imaging. Invest Ophthalmol Vis Sci. 2014;55(11):7545–7552. doi:10.1167/iovs.14-15127.
  • Singh M, Nair A, Aglyamov SR, Larin KV. Compressional optical coherence elastography of the cornea. Photonics. 2021;8(4):111. doi:10.3390/photonics8040111.
  • Nahas A, Bauer M, Roux S, Boccara AC. 3d static elastography at the micrometer scale using full field oct. Biomed Opt Express. 2013;4(10):2138–2149. doi:10.1364/BOE.4.002138.
  • Kling S, Torres-Netto EA, Spiru B, Sekundo W, Hafezi F. Quasi-static optical coherence elastography to characterize human corneal biomechanical properties. Invest Ophthalmol Vis Sci. 2020;61(6):29–29. doi:10.1167/iovs.61.6.29.
  • Ramier A, Eltony AM, Chen Y, Clouser F, Birkenfeld JS, Watts A, Yun SH. In vivo measurement of shear modulus of the human cornea using optical coherence elastography. Sci Rep. 2020;10(1):17366. doi:10.1038/s41598-020-74383-4.
  • De Stefano VS, Ford MR, Seven I, Dupps WJ. Jr. Live human assessment of depth-dependent corneal displacements with swept-source optical coherence elastography. PLoS One. 2018;13(12):e0209480. doi:10.1371/journal.pone.0209480.
  • De Stefano VS, Ford MR, Seven I, Dupps WJ. Jr. Depth-dependent corneal biomechanical properties in normal and keratoconic subjects by optical coherence elastography. Trans Vis Sci Tech. 2020;9(7):4. doi:10.1167/tvst.9.7.4.
  • Ferguson TJ, Singuri S, Jalaj S, Ford MR, De Stefano VS, Seven I, Dupps WJ. Jr. Depth-resolved corneal biomechanical changes measured via optical coherence elastography following corneal crosslinking. Transl Vis Sci Technol. 2021;10(5):7. doi:10.1167/tvst.10.5.7.