129
Views
0
CrossRef citations to date
0
Altmetric
Strabismus and Extraocular Anatomy

Histologic and Immunohistochemical Evaluation of Radiosurgery in Strabismus Surgery in a Rabbit Model

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1410-1415 | Received 15 Feb 2022, Accepted 18 Jun 2022, Published online: 18 Jul 2022

References

  • Metz HS. Restrictive factors in strabismus. Surv Ophthalmol. 1983;28(2):71–83. doi:10.1016/0039-6257(83)90075-9.
  • Kassem RR, El-Mofty RMA. Amniotic membrane transplantation in strabismus surgery. Curr Eye Res. 2019;44(5):451–464. doi:10.1080/02713683.2018.1562555.
  • Güçlü ES, Sari AA, Dinç E, Özcan Metin T, Çoşkun Yilmaz B, Taşdelen B. Efficacy of mitomycin-C and infliximab in reducing adhesion and fibrosis following strabismus surgery. Turk J Med Sci. 2016;46(5):1401–1406. doi:10.3906/sag-1506-45.
  • Chun BY, Rhiu S. Cryopreserved rabbit amniotic membrane alleviated inflammatory response and fibrosis following experimental strabismus surgery in rabbits. PLoS One. 2017;12(10):e0187058. doi:10.1371/journal.pone.0187058.
  • Ryu WY, Jung HM, Roh MS, Kwon YH, Jeung WJ, Park WC, Rho SH, Ahn HB. The effect of a temperature-sensitive poloxamer-alginate-CaCl2 mixture after strabismus surgery in a rabbit model. J Aapos. 2013;17(5):484–489. doi:10.1016/j.jaapos.2013.07.003.
  • Kennedy JB, Larochelle MB, Pedler MG, Petrash JM, Enzenauer RW. The effect of amniotic membrane grafting on healing and wound strength after strabismus surgery in a rabbit model. J Aapos. 2018;22(1):22–26 e1. doi:10.1016/j.jaapos.2017.08.007.
  • Oktem C, Oto S, Toru S, Bakar C, Ozdemir H, Akova YA. Suramin, genistein and collagen matrix (DuraGen) for delayed adjustment after strabismus surgery: which one is best? Curr Eye Res. 2016;41(3):417–424.
  • Han SB, Kim JH, Yang HK, Hwang JM. Efficacy of polytetrafluoroethylene/polylactide-co-glycolide (PTFE/PLGA) laminate and PTFE/PLGA laminate containing slow-releasing thalidomide in delayed adjustable strabismus surgery in a rabbit model. Curr Eye Res. 2019;44(7):806–812. doi:10.1080/02713683.2019.1591461.
  • Yoo YJ, Hwang JM, Choe G, Yang HK. Efficacy of collagen matrix implant on adhesions in restrictive strabismus: an experimental study in a rabbit model. Acta Ophthalmol. 2019;97(2):e156–e61. doi:10.1111/aos.13876.
  • Jung KI, Choi JS, Kim HK, Shin SY. Effects of an anti-transforming growth factor-beta agent (pirfenidone) on strabismus surgery in rabbits. Curr Eye Res. 2012;37(9):770–776. doi:10.3109/02713683.2012.681748.
  • Takeuchi K, Nakazawa M, Metoki T, Yamazaki H, Miyagawa Y, Ito T. Effects of solid hyaluronic acid film on postoperative fibrous scar formation after strabismus surgery in animals. J Pediatr Ophthalmol Strabismus. 2011;48(5):301–304. doi:10.3928/01913913-20100920-02.
  • Kassem RR, Khodeir MM, Salem M, Abdel-Hamid MA, El-Mofty RM, Kamal AM, Elhilali HM. Effect of cryopreserved amniotic membrane on the development of adhesions and fibrosis after extraocular muscle surgery in rabbits. Acta Ophthalmol. 2013;91(2):e140-8–e148. doi:10.1111/j.1755-3768.2012.02563.x.
  • Choi SU, Kim KW, Moon NJ. Effective treatment for prevention of post-operative adhesion after strabismus surgery in experimental rabbit model: 0.5% tranilast ophthalmic solution. BMC Ophthalmol. 2016;16(1):166. doi:10.1186/s12886-016-0344-8.
  • Eşme A, Yildirim C, Tatlipinar S, Düzcan E, Yaylali V, Ozden S. Effects of intraoperative sponge mitomycin C and 5-fluorouracil on scar formation following strabismus surgery in rabbits. Strabismus. 2004;12(3):141–148.
  • Gupta P, Dadeya S, Bhambhawani V. Comparison of minimally invasive strabismus surgery (MISS) and conventional strabismus surgery using the limbal approach. J Pediatr Ophthalmol Strabismus. 2017;54(4):208–215. doi:10.3928/01913913-20170321-01.
  • Kushner BJ. Comparison of a new, minimally invasive strabismus surgery technique with the usual limbal approach for rectus muscle recession and plication. Br J Ophthalmol. 2007;91(1):5. doi:10.1136/bjo.2006.108381.
  • Charoenkwan K, Iheozor-Ejiofor Z, Rerkasem K, Matovinovic E. Scalpel versus electrosurgery for major abdominal incisions. Cochrane Database Syst Rev. 2017;6:CD005987.
  • Monteiro L, Delgado ML, Garces F, Machado M, Ferreira F, Martins M, Salazar F, Pacheco JJ. A histological evaluation of the surgical margins from human oral fibrous-epithelial lesions excised with CO2 laser, diode laser, Er:YAG laser, Nd:YAG laser, electrosurgical scalpel and cold scalpel. Med Oral. 2019;24(2):e271–e80. doi:10.4317/medoral.22819.
  • Manivannan N, Ahathya RS, Rajaram PC. Scalpel versus electrosurgery: comparison of gingival perfusion status using ultrasound Doppler flowmetry. J Pharm Bioallied Sci. 2013;5(Suppl 2):S154–S9. doi:10.4103/0975-7406.114317.
  • Sinha UK, Gallagher LA. Effects of steel scalpel, ultrasonic scalpel, CO2 laser, and monopolar and bipolar electrosurgery on wound healing in guinea pig oral mucosa. Laryngoscope. 2003;113(2):228–236.
  • Ahn JM, Choi CY, Seo KY. Surgical approach with high-frequency radiowave electrosurgery for superior limbic keratoconjunctivitis. Cornea. 2014;33(2):210–214. doi:10.1097/ICO.0000000000000013.
  • Ji MJ, Lee SJ, Han SB, Hyon JY. Efficacy and safety of conjunctival cystectomy using high-frequency radiowave electrosurgery: a preliminary report. Eye Contact Lens. 2019;45(6):410–413. doi:10.1097/ICL.0000000000000583.
  • Ji YW, Seong H, Lee S, Alotaibi MH, Kim TI, Lee HK, Seo KY. The correction of conjunctivochalasis using high-frequency radiowave electrosurgery improves dry eye disease. Sci Rep. 2021;11(1):2551. doi:10.1038/s41598-021-82088-5.
  • Woo KI, Choi CY. High-frequency radiowave electrosurgery for persistent conjunctival chemosis following cosmetic blepharoplasty. Plast Reconstr Surg. 2014;133(6):1336–1342. doi:10.1097/PRS.0000000000000175.
  • Xiang W, Zhong X, Chen H, Chen W, Chen W. Pupilloplasty by radiofrequency diathermy. Acta Ophthalmol. 2019;97(3):e479–e81. doi:10.1111/aos.13827.
  • Singh A, Tiwary PK, Jha AK, Zeeshan M, Ranjan A. Successful treatment of xanthelasma palpebrarum with a combination of radiofrequency ablation and wound suturing. J Cosmet Dermatol. 2020;19(12):3286–3290. doi:10.1111/jocd.13678.
  • Hou B, Wang F, Ye Z, Jin X, Fu Y, Li Z. Study of minimally invasive radiofrequency ablation of the ciliary body for the treatment of glaucoma in rabbits. Mol Med Rep. 2020;21(3):1071–1076.
  • Zgaljardic Z, Zgaljardic I, Juric F. Treatment of malar mound and festoon with fractional microneedle bipolar radiofrequency combined with 15% TCA peel. J Cosmet Dermatol. 2021;20(6):1810–1812.
  • Salama MM, Abdel-Hamid RM, El-Basty MK, El-Zawahry OM. One-year results of stab incision glaucoma surgery and radiofrequency-assisted stab incision in management of open-angle glaucoma. Middle East Afr J Ophthalmol. 2019;26(3):141–147. doi:10.4103/meajo.MEAJO_153_18.
  • Hasar ZB, Ozmeric N, Ozdemir B, Gökmenoğlu C, Baris E, Altan G, Kahraman S. Comparison of radiofrequency and electrocautery with conventional scalpel incisions. J Oral Maxillofac Surg. 2016;74(11):2136–2141. doi:10.1016/j.joms.2016.06.172.
  • Liboon J, Funkhouser W, Terris DJ. A comparison of mucosal incisions made by scalpel, CO2 laser, electrocautery, and constant-voltage electrocautery. Otolaryngol Head Neck Surg. 1997;116(3):379–385. doi:10.1016/S0194-5998(97)70277-8.
  • Silverman EB, Read RW, Boyle CR, Cooper R, Miller WW, McLaughlin RM. Histologic comparison of canine skin biopsies collected using monopolar electrosurgery, CO2 laser, radiowave radiosurgery, skin biopsy punch, and scalpel. Vet Surgery. 2007;36(1):50–56. doi:10.1111/j.1532-950X.2007.00234.x.
  • Courey MS, Fomin D, Smith T, Huang S, Sanders D, Reinisch L. Histologic and physiologic effects of electrocautery, CO2 laser, and radiofrequency injury in the porcine soft palate. Laryngoscope. 1999;109(8):1316–1319. doi:10.1097/00005537-199908000-00025.
  • Hernandez-Divers S, Stahl SJ, Cooper T, Blas-Machado U. Comparison between CO2 laser and 4.0 MHz radiosurgery for incising skin in white Carneau pigeons (Columba livia). J Avian Med Surg. 2008;22(2):103–107. doi:10.1647/2007-009R1.1.
  • Schoinohoriti OK, Chrysomali E, Tzerbos F, Iatrou I. Comparison of lateral thermal injury and healing of porcine skin incisions performed by CO2-laser, monopolar electrosurgery and radiosurgery: a preliminary study based on histological and immunohistochemical results. Int J Dermatol. 2012;51(8):979–986. doi:10.1111/j.1365-4632.2011.05384.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.