1,545
Views
6
CrossRef citations to date
0
Altmetric
Retina

Bioinformatical and Biochemical Analyses on the Protective Role of Traditional Chinese Medicine against Age-Related Macular Degeneration

, ORCID Icon, , , , , , ORCID Icon & show all
Pages 1450-1462 | Received 13 May 2022, Accepted 27 Jul 2022, Published online: 22 Aug 2022

References

  • Handa J, Bowes Rickman C, Dick A, Gorin M, Miller J, Toth C, Ueffing M, Zarbin M, Farrer L. A systems biology approach towards understanding and treating non-neovascular age-related macular degeneration. Nat Commun. 2019;10(1):3347. doi:10.1038/s41467-019-11262-1.
  • Wong W, Su X, Li X, Cheung C, Klein R, Cheng C, Wong T. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106-116–e116. doi:10.1016/S2214-109X(13)70145-1.
  • Fritsche L, Igl W, Bailey J, Grassmann F, Sengupta S, Bragg-Gresham J, Burdon K, Hebbring S, Wen C, Gorski M, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet. 2016;48(2):134–143. doi:10.1038/ng.3448.
  • Heesterbeek T, Lorés-Motta L, Hoyng C, Lechanteur Y, den Hollander A. Risk factors for progression of age-related macular degeneration. Ophthalmic Physiol Opt. 2020;40(2):140–170. doi:10.1111/opo.12675.
  • Zhang X, Alhasani RH, Zhou X, Reilly J, Zeng Z, Strang N, Shu X. Oxysterols and retinal degeneration. Br J Pharmacol. 2021;178(16):3205–3219. doi:10.1111/bph.15391.
  • Wu J, Sun X. Complement system and age-related macular degeneration: drugs and challenges. Drug Des Devel Ther. 2019;13:2413–2425. doi:10.2147/DDDT.S206355.
  • Li Y, Li X, Li X, Zeng Z, Strang N, Shu X, Tan Z. Non-neglectable therapeutic options for age-related macular degeneration: a promising perspective from traditional Chinese medicine. J Ethnopharmacol. 2022;282:114531. doi:10.1016/j.jep.2021.114531.
  • Song Y, Wang H, Pan Y, Liu T. Investigating the multi-target pharmacological mechanism of Hedyotis diffusa willd acting on prostate cancer: a network pharmacology approach. Biomolecules. 2019;9(10):591. doi:10.3390/biom9100591.
  • Zhang W, Tao Q, Guo Z, Fu Y, Chen X, Shar P, Shahen M, Zhu J, Xue J, Bai Y, et al. Systems pharmacology dissection of the integrated treatment for cardiovascular and gastrointestinal disorders by traditional chinese medicine. Sci Rep. 2016;6:32400. doi:10.1038/srep32400.
  • Jiao X, Jin X, Ma Y, Yang Y, Li J, Liang L, Liu R, Li Z. A comprehensive application: molecular docking and network pharmacology for the prediction of bioactive constituents and elucidation of mechanisms of action in component-based Chinese medicine. Comput Biol Chem. 2021;90:107402. 2021;doi:10.1016/j.compbiolchem.2020.107402.
  • Ru J, Li R, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6:13. doi:10.1186/1758-2946-6-13.
  • Huang C, Yang Y, Chen X, Wang C, Li Y, Zheng C, Wang Y. Large-scale cross-species chemogenomic platform proposes a new drug discovery strategy of veterinary drug from herbal medicines. PLoS One. 2017;12(9):e0184880. doi:10.1371/journal.pone.0184880.
  • Liu J, Li Y, Zhang Y, Huo M, Sun X, Xu Z, Tan N, Du K, Wang Y, Zhang J, et al. A network pharmacology approach to explore the mechanisms of Qishen Granules in heart failure. Med Sci Monit. 2019;25:7735–7745. doi:10.12659/MSM.919768.
  • Guo X, Ji J, Feng Z, Hou X, Luo Y, Mei Z. A network pharmacology approach to explore the potential targets underlying the effect of sinomenine on rheumatoid arthritis. Int Immunopharmacol. 2020;80:106201. doi:10.1016/j.intimp.2020.106201.
  • Franz M, Lopes C, Huck G, Dong Y, Sumer O, Bader G. Cytoscape.js: a graph theory library for visualisation and analysis. Bioinformatics. 2016;32(2):309–311. doi:10.1093/bioinformatics/btv557.
  • Szklarczyk D, Morris J, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva N, Roth A, Bork P, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45(D1):D362–D368. doi:10.1093/nar/gkw937.
  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou K, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447–D452. doi:10.1093/nar/gku1003.
  • Goodsell D, Zardecki C, Di Costanzo L, Duarte J, Hudson B, Persikova I, Segura J, Shao C, Voigt M, Westbrook J, et al. RCSB Protein Data Bank: enabling biomedical research and drug discovery. Protein Sci. 2020;29(1):52–65. doi:10.1002/pro.3730.
  • Sterling T, Irwin J. ZINC 15–Ligand discovery for everyone. J Chem Inf Model. 2015;55(11):2324–2337. doi:10.1021/acs.jcim.5b00559.
  • Alhasani RH, Biswas L, Tohari AM, Zhou X, Reilly J, He JF, Shu X. Gypenosides protect retinal pigment epithelium cells from oxidative stress. Food Chem Toxicol. 2018;112:76–85. doi:10.1016/j.fct.2017.12.037.
  • Tohari AM, Alhasani RH, Biswas L, Patnaik SR, Reilly J, Zeng Z, Shu X. Vitamin D attenuates oxidative damage and inflammation in retinal pigment epithelial cells. Antioxidants. 2019;8(9):341. doi:10.3390/antiox8090341.
  • Datta S, Cano M, Ebrahimi K, Wang L, Handa J. The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res. 2017;60:201–218. doi:10.1016/j.preteyeres.2017.03.002.
  • Li Y, Zhou H, Xie J, Hou AM, Xu Z, Zhang Y. A Novel method for evaluating the cardiotoxicity of traditional chinese medicine compatibility by using support vector machine model combined with metabonomics. Evid Based Complement Alternat Med. 2016;2016:6012761.
  • Boezio B, Audouze K, Ducrot P, Taboureau O. Network-based approaches in pharmacology. Mol Inform. 2017;2017:36.
  • Zhou W, Wang Y, Lu A, Zhang G. Systems pharmacology in small molecular drug discovery. Int J Mol Sci. 2016;17(2):246. doi:10.3390/ijms17020246.
  • Anand David A, Arulmoli R, Parasuraman S. Overviews of biological importance of Quercetin: a bioactive flavonoid. Pharmacogn Rev. 2016;10(20):84–89. doi:10.4103/0973-7847.194044.
  • Salvamani S, Gunasekaran B, Shaharuddin N, Ahmad S, Shukor M. Antiartherosclerotic effects of plant flavonoids. Biomed Res Int. 2014;2014:480258. doi:10.1155/2014/480258.
  • Zhao Y, Chen B, Shen J, Wan L, Zhu Y, Yi T, Xiao Z. The beneficial effects of quercetin, curcumin, and resveratrol in obesity. Oxid Med Cell Longev. 2017;2017:1459497. doi:10.1155/2017/1459497.
  • Kim J, Jin H, Jang D, Jeong K, Choung S. Quercetin-3-O-α-l-arabinopyranoside protects against retinal cell death via blue light-induced damage in human RPE cells and Balb-c mice. Food Funct. 2018;9(4):2171–2183. doi:10.1039/c7fo01958k.
  • Lee M, Yun S, Lee H, Yang J. Quercetin mitigates inflammatory responses induced by vascular endothelial growth factor in mouse retinal photoreceptor cells through suppression of nuclear factor Kappa B. Int J Mol Sci. 2017;18(11):2497. doi:10.3390/ijms18112497.
  • Boeing T, de Souza P, Speca S, Somensi L, Mariano L, Cury B, Ferreira Dos Anjos M, Quintão N, Dubuqoy L, Desreumax P, et al. Luteolin prevents irinotecan-induced intestinal mucositis in mice through antioxidant and anti-inflammatory properties. Br J Pharmacol. 2020;177(10):2393–2408. doi:10.1111/bph.14987.
  • Hytti M, Szabó D, Piippo N, Korhonen E, Honkakoski P, Kaarniranta K, Petrovski G, Kauppinen A. Two dietary polyphenols, fisetin and luteolin, reduce inflammation but augment DNA damage-induced toxicity in human RPE cells. J Nutr Biochem. 2017;42:37–42. doi:10.1016/j.jnutbio.2016.12.014.
  • Hytti M, Piippo N, Korhonen E, Honkakoski P, Kaarniranta K, Kauppinen A. Fisetin and luteolin protect human retinal pigment epithelial cells from oxidative stress-induced cell death and regulate inflammation. Sci Rep. 2015;5:17645. doi:10.1038/srep17645.
  • Shen Y, Zhang W, Chiou G. Effect of naringenin on NaIO(3)-induced retinal pigment epithelium degeneration and laser-induced choroidal neovascularization in rats. Int J Ophthalmol. 2010;3:5–8.
  • Gopinath B, Liew G, Kifley A, Lewis J, Bondonno C, Joachim N, Hodgson J, Mitchell P. Association of dietary nitrate intake with the 15-year incidence of age-related macular degeneration. J Acad Nutr Diet. 2018;118(12):2311–2314. doi:10.1016/j.jand.2018.07.012.
  • Jiang YH, Jiang LY, Wang YC, Ma DF, Li X. Quercetin attenuates atherosclerosis via modulating oxidized LDL-induced endothelial cellular senescence. Front Pharmacol. 2020;11:512.
  • Zoico E, Nori N, Darra E, Tebon M, Rizzatti V, Policastro G, De Caro A, Rossi AP, Fantin F, Zamboni M. Senolytic effects of quercetin in an in vitro model of pre-adipocytes and adipocytes induced senescence. Sci Rep. 2021;11(1):1–3. doi:10.1038/s41598-021-02544-0.
  • Zhu RZ, Li BS, Gao SS, Seo JH, Choi BM. Luteolin inhibits H2O2-induced cellular senescence via modulation of SIRT1 and p53. Korean J Physiol Pharmacol. 2021;25(4):297–305. doi:10.4196/kjpp.2021.25.4.297.
  • Da Pozzo E, Costa B, Cavallini C, Testai L, Martelli A, Calderone V, Martini C. The citrus flavanone naringenin protects myocardial cells against age-associated damage. Oxid Med Cell Longev. 2017;2017:9536148. doi:10.1155/2017/9536148.
  • Gerdes EO, Misra A, Netto JM, Tchkonia T, Kirkland JL. Strategies for late phase preclinical and early clinical trials of senolytics. Mech Ageing Dev. 2021;200:111591. doi:10.1016/j.mad.2021.111591.
  • Blasiak J. Senescence in the pathogenesis of age-related macular degeneration. Cell Mol Life Sci. 2020;77(5):789–805. doi:10.1007/s00018-019-03420-x.