120
Views
1
CrossRef citations to date
0
Altmetric
Lens

Genome-Wide Repertoire of Transfer RNA-Derived Fragments in a Mouse Model of Age-Related Cataract

, , , , , & show all
Pages 1394-1401 | Received 02 Nov 2021, Accepted 28 Jul 2022, Published online: 23 Aug 2022

References

  • Sheets NL, Chauhan BK, Wawrousek E, Hejtmancik JF, Cvekl A, Kantorow M. Cataract- and lens-specific upregulation of ARK receptor tyrosine kinase in Emory mouse cataract. Invest Ophthalmol Vis Sci. 2002;43(6):1870–1875.
  • Kuck JF. Late onset hereditary cataract of the Emory mouse. A model for human senile cataract. Exp Eye Res. 1990;50(6):659–664. doi:10.1016/0014-4835(90)90110-G.
  • Takizawa A, Sasaki K. In vivo observations of cataract development in Emory mouse. Ophthalmic Res. 1986;18(4):243–247. doi:10.1159/000265441.
  • Biswas SK, Brako L, Gu S, Jiang JX, Lo WK. Regional changes of AQP0-dependent square array junction and gap junction associated with cortical cataract formation in the Emory mutant mouse. Exp Eye Res. 2014;127:132–142. doi:10.1016/j.exer.2014.07.020.
  • Bhuyan KC, Bhuyan DK, Kuck JF, Jr, Kuck KD, Kern HL. Increased lipid peroxidation and altered membrane functions in Emory mouse cataract. Curr Eye Res. 1982;2(9):595–606.
  • Kim YJ, Lee WJ, Ko BW, Lim HW, Yeon Y, Ahn SJ, Lee BR. Investigation of microRNA expression in anterior lens capsules of senile cataract patients and microRNA differences according to the cataract type. Trans Vis Sci Tech. 2021;10(2):14. doi:10.1167/tvst.10.2.14.
  • Zhang N, Zhang C, Wang X, Qi Y. High-throughput sequencing reveals novel lincRNA in age-related cataract. Int J Mol Med. 2017;40(6):1829–1839. doi:10.3892/ijmm.2017.3185.
  • Zeng T, Hua Y, Sun C, Zhang Y, Yang F, Yang M, Yang Y, Li J, Huang X, Wu H, et al. Relationship between tRNA-derived fragments and human cancers. Int J Cancer. 2020;147(11):3007–3018. doi:10.1002/ijc.33107.
  • Shao Y, Sun Q, Liu X, Wang P, Wu R, Ma Z. tRF-Leu-CAG promotes cell proliferation and cell cycle in non-small cell lung cancer. Chem Biol Drug Des. 2017;90(5):730–738. doi:10.1111/cbdd.12994.
  • Wang X, Zhang Y, Ghareeb WM, Lin S, Lu X, Huang Y, Huang S, Xu Z, Chi P. A comprehensive repertoire of transfer RNA-derived fragments and their regulatory networks in colorectal cancer. J Comput Biol. 2020;27(12):1644–1655. doi:10.1089/cmb.2019.0305.
  • Han L, Lai H, Yang Y, Hu J, Li Z, Ma B, Xu W, Liu W, Wei W, Li D, et al. A 5'-tRNA halve, tiRNA-Gly promotes cell proliferation and migration via binding to RBM17 and inducing alternative splicing in papillary thyroid cancer. J Exp Clin Cancer Res. 2021;40(1):222. doi:10.1186/s13046-021-02024-3.
  • Qin C, Feng H, Zhang C, Zhang X, Liu Y, Yang DG, Du LJ, Sun YC, Yang ML, Gao F, et al. Differential expression profiles and functional prediction of tRNA-derived small RNAs in rats after traumatic spinal cord injury. Front Mol Neurosci. 2019;12:326.
  • Peng Y, Zou J, Wang JH, Zeng H, Tan W, Yoshida S, Zhang L, Li Y, Zhou Y. Small RNA sequencing reveals transfer RNA-derived small RNA expression profiles in retinal neovascularization. Int J Med Sci. 2020;17(12):1713–1722. doi:10.7150/ijms.46209.
  • Han X, Cai L, Lu Y, Li D, Yang J. Identification of tRNA-derived fragments and their potential roles in diabetic cataract rats. Epigenomics. 2020;12(16):1405–1418. doi:10.2217/epi-2020-0193.
  • Cui Y, Huang Y, Wu X, Zheng M, Xia Y, Fu Z, Ge H, Wang S, Xie H. Hypoxia-induced tRNA-derived fragments, novel regulatory factor for doxorubicin resistance in triple-negative breast cancer. J Cell Physiol. 2019;234(6):8740–8751. doi:10.1002/jcp.27533.
  • Kuscu C, Kumar P, Kiran M, Su Z, Malik A, Dutta A. tRNA fragments (tRFs) guide Ago to regulate gene expression post-transcriptionally in a dicer-independent manner. RNA. 2018;24(8):1093–1105. doi:10.1261/rna.066126.118.
  • Hodge WG, Whitcher JP, Satariano W. Risk factors for age-related cataracts. Epidemiol Rev. 1995;17(2):336–346. doi:10.1093/oxfordjournals.epirev.a036197.
  • Age-Related Eye Disease Study Research Group. Risk factors associated with age-related nuclear and cortical cataract: a case-control study in the Age-Related Eye Disease Study, AREDS report no. 5. Ophthalmology. 2001;108(8):1400–1408.
  • Shin G, Koo HJ, Seo M, Lee SV, Nam HG, Jung GY. Transfer RNA-derived fragments in aging Caenorhabditis elegans originate from abundant homologous gene copies. Sci Rep. 2021;11(1):12304. doi:10.1038/s41598-021-91724-z.
  • Karaiskos S, Grigoriev A. Dynamics of tRNA fragments and their targets in aging mammalian brain. F1000Res. 2016;5:2758. doi:10.12688/f1000research.10116.1.
  • Periyasamy P, Shinohara T. Age-related cataracts: role of unfolded protein response, Ca2+ mobilization, epigenetic DNA modifications, and loss of Nrf2/Keap1 dependent cytoprotection. Prog Retin Eye Res. 2017;60:1–19. doi:10.1016/j.preteyeres.2017.08.003.
  • Nawrot B, Sochacka E, Duchler M. tRNA structural and functional changes induced by oxidative stress. Cell Mol Life Sci. 2011;68(24):4023–4032. doi:10.1007/s00018-011-0773-8.
  • Maute RL, Schneider C, Sumazin P, Holmes A, Califano A, Basso K, Dalla-Favera R. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc Natl Acad Sci USA. 2013;110(4):1404–1409. doi:10.1073/pnas.1206761110.
  • Zhou J, Wan F, Wang Y, Long J, Zhu X. Small RNA sequencing reveals a novel tsRNA-26576 mediating tumorigenesis of breast cancer. Cancer Manag Res. 2019;11:3945–3956. doi:10.2147/CMAR.S199281.
  • Bungau S, Abdel-Daim MM, Tit DM, Ghanem E, Sato S, Maruyama-Inoue M, Yamane S, Kadonosono K. Health benefits of polyphenols and carotenoids in age-related eye diseases. Oxid Med Cell Longev. 2019;2019:9783429. doi:10.1155/2019/9783429.
  • Zheng T, Lu Y. Changes in SIRT1 expression and its downstream pathways in age-related cataract in humans. Curr Eye Res. 2011;36(5):449–455. doi:10.3109/02713683.2011.559301.
  • Rong X, Rao J, Li D, Jing Q, Lu Y, Ji Y. TRIM69 inhibits cataractogenesis by negatively regulating p53. Redox Biol. 2019;22:101157. doi:10.1016/j.redox.2019.101157.
  • Lu Q, Zhang Y, Kasetti RB, Gaddipati S, Cvm NK, Borchman D, Li Q. Heterozygous loss of Yap1 in mice causes progressive cataracts. Invest Ophthalmol Vis Sci. 2020;61(12):21. doi:10.1167/iovs.61.12.21.
  • Li PF, Guo SC, Liu T, Cui H, Feng D, Yang A, Cheng Z, Luo J, Tang T, Wang Y. Integrative analysis of transcriptomes highlights potential functions of transfer-RNA-derived small RNAs in experimental intracerebral hemorrhage. Aging. 2020;12(22):22794–22813.
  • Kumar P, Anaya J, Mudunuri SB, Dutta A. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol. 2014;12:78. doi:10.1186/s12915-014-0078-0.
  • Green JA, Ansari MY, Ball HC, Haqqi TM. tRNA-derived fragments (tRFs) regulate post-transcriptional gene expression via AGO-dependent mechanism in IL-1beta stimulated chondrocytes. Osteoarthritis Cartilage. 2020;28(8):1102–1110. doi:10.1016/j.joca.2020.04.014.
  • Tong L, Zhang W, Qu B, Zhang F, Wu Z, Shi J, Chen X, Song Y, Wang Z. The tRNA-derived fragment-3017A promotes metastasis by inhibiting NELL2 in human gastric cancer. Front Oncol. 2020;10:570916.
  • Shiels A, Hejtmancik JF. Mutations and mechanisms in congenital and age-related cataracts. Exp Eye Res. 2017;156:95–102. doi:10.1016/j.exer.2016.06.011.
  • Lassen N, Bateman JB, Estey T, Kuszak JR, Nees DW, Piatigorsky J, Duester G, Day BJ, Huang J, Hines LM, et al. Multiple and additive functions of ALDH3A1 and ALDH1A1: cataract phenotype and ocular oxidative damage in Aldh3a1(-/-)/Aldh1a1(-/-) knock-out mice. J Biol Chem. 2007;282(35):25668–25676. doi:10.1074/jbc.M702076200.
  • Anand D, Lachke SA. Systems biology of lens development: a paradigm for disease gene discovery in the eye. Exp Eye Res. 2017;156:22–33. doi:10.1016/j.exer.2016.03.010.
  • Islam F, Htun S, Lai LW, Krall M, Poranki M, Martin PM, Sobreira N, Wohler ES, Yu J, Moore AT, et al. Exome sequencing in patients with microphthalmia, anophthalmia, and coloboma (MAC) from a consanguineous population. Clin Genet. 2020;98(5):499–506. doi:10.1111/cge.13830.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.