279
Views
3
CrossRef citations to date
0
Altmetric
Retina

MEK/ERK/RUNX2 Pathway-Mediated IL-11 Autocrine Promotes the Activation of Müller Glial Cells during Diabetic Retinopathy

, , , , , , , & show all
Pages 1622-1630 | Received 04 Mar 2022, Accepted 22 Sep 2022, Published online: 10 Oct 2022

References

  • Abu-El-Asrar AM, Dralands L, Missotten L, Al-Jadaan IA, Geboes K. Expression of apoptosis markers in the retinas of human subjects with diabetes. Invest Ophthalmol Vis Sci. 2004;45(8):2760–2766. http://dx.doi.org/10.1167/iovs.03-1392.
  • Mizutani M, Gerhardinger C, Lorenzi M. Muller cell changes in human diabetic retinopathy. Diabetes. 1998;47(3):445–449. http://dx.doi.org/10.2337/diabetes.47.3.445.
  • Geller SF, Lewis GP, Fisher SK. FGFR1, signaling, and AP-1 expression after retinal detachment: reactive Muller and RPE cells. Invest Ophthalmol Vis Sci. 2001;42(6):1363–1369.
  • Sun Y, Wang D, Ye F, Hu DN, Liu X, Zhang L, Gao L, Song E, Zhang DY. Elevated cell proliferation and VEGF production by high-glucose conditions in Muller cells involve XIAP. Eye. 2013;27(11):1299–1307. http://dx.doi.org/10.1038/eye.2013.158.
  • Tout S, Chan-Ling T, Hollander H, Stone J. The role of Muller cells in the formation of the blood-retinal barrier. Neuroscience. 1993;55(1):291–301. http://dx.doi.org/10.1016/0306-4522(93)90473-s.
  • Choi YK, Kim KW. Blood-neural barrier: its diversity and coordinated cell-to-cell communication. BMB Rep. 2008;41(5):345–352. http://dx.doi.org/10.5483/bmbrep.2008.41.5.345.
  • Wang J, Xu X, Elliott MH, Zhu M, Le YZ. Muller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakage. Diabetes. 2010;59(9):2297–2305. http://dx.doi.org/10.2337/db09-1420.
  • Wang JJ, Shan K, Liu BH, Liu C, Zhou RM, Li XM, Dong R, Zhang SJ, Zhang SH, Wu JH, et al. Targeting circular RNA-ZRANB1 for therapeutic intervention in retinal neurodegeneration. Cell Death Dis. 2018;9(5):540. http://dx.doi.org/10.1038/s41419-018-0597-7.
  • Zhang X, Wu H, Dobson JR, Browne G, Hong D, Akech J, Languino LR, Stein GS, Lian JB. Expression of the IL-11 gene in metastatic cells is supported by Runx2-Smad and Runx2-cJun complexes induced by TGFbeta1. J Cell Biochem. 2015;116(9):2098–2108. http://dx.doi.org/10.1002/jcb.25167.
  • Coorey NJ, Shen W, Zhu L, Gillies MC. Differential expression of IL-6/gp130 cytokines, jak-STAT signaling and neuroprotection after Muller cell ablation in a transgenic mouse model. Invest Ophthalmol Vis Sci. 2015;56(4):2151–2161. http://dx.doi.org/10.1167/iovs.14-15695.
  • Abu EL-Asrar AM, Ahmad A, Allegaert E, Siddiquei MM, Gikandi PW, DE Hertogh G, Opdenakker G. Interleukin-11 overexpression and M2 macrophage density are associated with angiogenic activity in proliferative diabetic retinopathy. Ocul Immunol Inflamm. 2020;28(4):575–588. http://dx.doi.org/10.1080/09273948.2019.1616772.
  • Schafer S, Viswanathan S, Widjaja AA, Lim WW, Moreno-Moral A, Delaughter DM, Ng B, Patone G, Chow K, Khin E, et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature. 2017;552(7683):110–115. http://dx.doi.org/10.1038/nature24676.
  • Mohammad G, Kowluru RA. Diabetic retinopathy and signaling mechanism for activation of matrix metalloproteinase-9. J Cell Physiol. 2012;227(3):1052–1061. http://dx.doi.org/10.1002/jcp.22822.
  • Gao F, Li F, Miao Y, Xu LJ, Zhao Y, Li Q, Zhang SH, Wu J, Sun XH, Wang Z. Involvement of the MEK-ERK/p38-CREB/c-fos signaling pathway in Kir channel inhibition-induced rat retinal Muller cell gliosis. Sci Rep. 2017;7(1):1480. http://dx.doi.org/10.1038/s41598-017-01557-y.
  • Ge C, Xiao G, Jiang D, Yang Q, Hatch NE, Roca H, Franceschi RT. Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J Biol Chem. 2009;284(47):32533–32543. http://dx.doi.org/10.1074/jbc.M109.040980.
  • Greenblatt MB, Shim JH, Zou W, Sitara D, Schweitzer M, Hu D, Lotinun S, Sano Y, Baron R, Park JM, et al. The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest. 2010;120(7):2457–2473. http://dx.doi.org/10.1172/JCI42285.
  • Limb GA, Salt TE, Munro PM, Moss SE, Khaw PT. In vitro characterization of a spontaneously immortalized human Muller cell line (MIO-M1). Invest Ophthalmol Vis Sci. 2002;43(3):864–869.
  • Vitolo MI, Anglin IE, Mahoney WM Jr, Renoud KJ, Gartenhaus RB, Bachman KE, Passaniti A. The RUNX2 transcription factor cooperates with the YES-associated protein, YAP65, to promote cell transformation. Cancer Biol Ther. 2007;6(6):856–863. http://dx.doi.org/10.4161/cbt.6.6.4241.
  • Cruzat A, Gonzalez-Andrades M, Mauris J, Abusamra DB, Chidambaram P, Kenyon KR, Chodosh J, Dohlman CH, Argueso P. Colocalization of galectin-3 with CD147 is associated with increased gelatinolytic activity in ulcerating human corneas. Invest Ophthalmol Vis Sci. 2018;59(1):223–230. http://dx.doi.org/10.1167/iovs.17-23196.
  • Zhao M, Liu Y, Liu R, Qi J, Hou Y, Chang J, Ren L. Upregulation of IL-11, an IL-6 family cytokine, promotes tumor progression and correlates with poor prognosis in non-small cell lung cancer. Cell Physiol Biochem. 2018;45(6):2213–2224. http://dx.doi.org/10.1159/000488166.
  • Mack M. Autocrine activation of fibroblasts by induction of IL-11 expression is a common pathway of profibrotic factors. Transplantation. 2018;102(5):710–711. http://dx.doi.org/10.1097/TP.0000000000002181.
  • Onnis B, Fer N, Rapisarda A, Perez VS, Melillo G. Autocrine production of IL-11 mediates tumorigenicity in hypoxic cancer cells. J Clin Invest. 2013;123(4):1615–1629. http://dx.doi.org/10.1172/JCI59623.
  • Komori T. Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Int J Mol Sci. 2019;20(7):1694. http://dx.doi.org/10.3390/ijms20071694.
  • Xiao D, Bi R, Liu X, Mei J, Jiang N, Zhu S. Notch signaling regulates MMP-13 expression via Runx2 in chondrocytes. Sci Rep. 2019;9(1):15596. http://dx.doi.org/10.1038/s41598-019-52125-5.
  • Takarada T, Yoneda Y. Transactivation by Runt related factor-2 of matrix metalloproteinase-13 in astrocytes. Neurosci Lett. 2009;451(2):99–104. http://dx.doi.org/10.1016/j.neulet.2008.12.037.
  • Nakazato R, Takarada T, Ikeno S, Nakamura S, Kutsukake T, Hinoi E, Yoneda Y. Upregulation of runt-related transcription factor-2 through CCAAT enhancer binding protein-beta signaling pathway in microglial BV-2 cells exposed to ATP. J Cell Physiol. 2015;230(10):2510–2521. http://dx.doi.org/10.1002/jcp.24988.
  • Yao R, Yao X, Liu R, Peng J, Tian T. Glucose-induced microRNA-218 suppresses the proliferation and promotes the apoptosis of human retinal pigment epithelium cells by targeting RUNX2. Biosci Rep. 2019;39:12. http://dx.doi.org/10.1042/BSR20192580.
  • Chen Y, Hu Y, Yang L, Zhou J, Tang Y, Zheng L, Qin P. Runx2 alleviates high glucose-suppressed osteogenic differentiation via PI3K/AKT/GSK3beta/beta-catenin pathway. Cell Biol Int. 2017;41(8):822–832. http://dx.doi.org/10.1002/cbin.10779.
  • Wang J, Wang B, Li Y, Wang D, Lingling E, Bai Y, Liu H. High glucose inhibits osteogenic differentiation through the BMP signaling pathway in bone mesenchymal stem cells in mice. EXCLI J. 2013;12:584–597.
  • D’Souza DR, Salib MM, Bennett J, Mochin-Peters M, Asrani K, Goldblum SE, Renoud KJ, Shapiro P, Passaniti A. Hyperglycemia regulates RUNX2 activation and cellular wound healing through the aldose reductase polyol pathway. J Biol Chem. 2009;284(27):17947–17955. http://dx.doi.org/10.1074/jbc.M109.002378.
  • Ng B, Dong J, D’Agostino G, Viswanathan S, Widjaja AA, Lim WW, Ko NSJ, Tan J, Chothani SP, Huang B, et al. Interleukin-11 is a therapeutic target in idiopathic pulmonary fibrosis. Sci Transl Med. 2019;11:511. http://dx.doi.org/10.1126/scitranslmed.aaw1237.
  • Corden B, Adami E, Sweeney M, Schafer S, Cook SA. IL-11 in cardiac and renal fibrosis: late to the party but a central player. Br J Pharmacol. 2020;177(8):1695–1708. http://dx.doi.org/10.1111/bph.15013.
  • Elshabrawy HA, Volin MV, Essani AB, Chen Z, Mcinnes IB, VAN Raemdonck K, Palasiewicz K, Arami S, Gonzalez M, Ashour HM, et al. IL-11 facilitates a novel connection between RA joint fibroblasts and endothelial cells. Angiogenesis. 2018;21(2):215–228. http://dx.doi.org/10.1007/s10456-017-9589-y.
  • Cook SA, Schafer S. Hiding in plain sight: interleukin-11 emerges as a master regulator of fibrosis, tissue integrity, and stromal inflammation. Annu Rev Med. 2020;71:263–276. http://dx.doi.org/10.1146/annurev-med-041818-011649.
  • Xie H, Zhang C, Liu D, Yang Q, Tang L, Wang T, Tian H, Lu L, Xu JY, Gao F, et al. Erythropoietin protects the inner blood-retinal barrier by inhibiting microglia phagocytosis via Src/Akt/cofilin signalling in experimental diabetic retinopathy. Diabetologia. 2021;64(1):211–225. http://dx.doi.org/10.1007/s00125-020-05299-x.
  • Diaz-Coranguez M, Lin CM, Liebner S, Antonetti DA. Norrin restores blood-retinal barrier properties after vascular endothelial growth factor-induced permeability. J Biol Chem. 2020;295(14):4647–4660. http://dx.doi.org/10.1074/jbc.RA119.011273.
  • Fan L, Yan H. FTY720 attenuates retinal inflammation and protects blood-retinal barrier in diabetic rats. Invest Ophthalmol Vis Sci. 2016;57(3):1254–1263. http://dx.doi.org/10.1167/iovs.15-18658.
  • Rangasamy S, Mcguire PG, Franco Nitta C, Monickaraj F, Oruganti SR, Das A. Chemokine mediated monocyte trafficking into the retina: role of inflammation in alteration of the blood-retinal barrier in diabetic retinopathy. PLoS One. 2014;9(10):e108508. http://dx.doi.org/10.1371/journal.pone.0108508.
  • Huang C, Fisher KP, Hammer SS, Navitskaya S, Blanchard GJ, Busik JV. Plasma exosomes contribute to microvascular damage in diabetic retinopathy by activating the classical complement pathway. Diabetes. 2018;67(8):1639–1649. http://dx.doi.org/10.2337/db17-1587.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.