154
Views
1
CrossRef citations to date
0
Altmetric
Retina

CircMED12L Protects Against Hydrogen Peroxide-induced Apoptotic and Oxidative Injury in Human Lens Epithelial Cells by miR-34a-5p/ALCAM axis

, &
Pages 1631-1640 | Received 31 May 2022, Accepted 05 Oct 2022, Published online: 23 Oct 2022

References

  • Liu YC, Wilkins M, Kim T, Malyugin B, Mehta JS. Cataracts. Lancet. 2017;390(10094):600–612. doi:10.1016/S0140-6736(17)30544-5.
  • Asbell PA, Dualan I, Mindel J, Brocks D, Ahmad M, Epstein S. Age-related cataract. Lancet. 2005;365(9459):599–609. doi:10.1016/S0140-6736(05)17911-2.
  • Kaur J, Kukreja S, Kaur A, Malhotra N, Kaur R. The oxidative stress in cataract patients. J Clin Diagn Res. 2012;6(10):1629–1632.
  • Brennan LA, McGreal RS, Kantorow M. Oxidative stress defense and repair systems of the ocular lens. Front Biosci (Elite Ed). 2012;4(1):141–155. doi:10.2741/e365.
  • Song MS, Sim HJ, Kang S, Park S, Seo K, Lee SY. Pharmacological inhibition of Kv3 on oxidative stress-induced cataract progression. Biochem Biophys Res Commun. 2020;533(4):1255–1261. doi:10.1016/j.bbrc.2020.09.138.
  • Clutton S. The importance of oxidative stress in apoptosis. Br Med Bull. 1997;53(3):662–668. doi:10.1093/oxfordjournals.bmb.a011637.
  • Li WC, Kuszak JR, Dunn K, Wang RR, Ma W, Wang GM, Spector A, Leib M, Cotliar AM, Weiss M. Lens epithelial cell apoptosis appears to be a common cellular basis for non-congenital cataract development in humans and animals. J Cell Biol. 1995;130(1):169–181. doi:10.1083/jcb.130.1.169.
  • Barrett SP, Wang PL, Salzman J. Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife. 2015;4:e07540. doi:10.7554/eLife.07540.
  • Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol. 2015;12(4):381–388. doi:10.1080/15476286.2015.1020271.
  • Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–691. doi:10.1038/s41576-019-0158-7.
  • Wu J, Qi X, Liu L, Hu X, Liu J, Yang J, Yang J, Lu L, Zhang Z, Ma S, et al. Emerging epigenetic regulation of circular RNAs in human cancer. Mol Ther Nucleic Acids. 2019;16:589–596. doi:10.1016/j.omtn.2019.04.011.
  • Zhang Y, Chen Y, Wan Y, Zhao Y, Wen Q, Tang X, Shen J, Wu X, Li M, Li X, et al. Circular RNAs in the regulation of oxidative stress. Front Pharmacol. 2021;12:697903.
  • Zhang C, Hu J, Yu Y. CircRNA is a rising star in researches of ocular diseases. Front Cell Dev Biol. 2020;8:850.
  • Guo N, Liu XF, Pant OP, Zhou DD, Hao JL, Lu CW. Circular RNAs: novel promising biomarkers in ocular diseases. Int J Med Sci. 2019;16(4):513–518. doi:10.7150/ijms.29750.
  • Yang L, Fu J, Zhou Y. Circular RNAs and their emerging roles in immune regulation. Front Immunol. 2018;9:2977.
  • Liang S, Dou S, Li W, Huang Y. Profiling of circular RNAs in age-related cataract reveals circZNF292 as an antioxidant by sponging miR-23b-3p. Aging (Albany NY). 2020;12(17):17271–17287. doi:10.18632/aging.103683.
  • Liu J, Zhang J, Zhang G, Zhou T, Zou X, Guan H, Wang Y. CircMRE11A_013 binds to UBXN1 and integrates ATM activation enhancing lens epithelial cells senescence in age-related cataract. Aging (Albany NY). 2021;13(4):5383–5402. doi:10.18632/aging.202470.
  • He J, Xie P, Ouyang J. Circ_0122396 protects human lens epithelial cells from hydrogen peroxide-induced injury by binding to miR-15a-5p to stimulate FGF1 expression. Curr Eye Res. 2022;47(2):246–255. doi:10.1080/02713683.2021.1978100.
  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–388. doi:10.1038/nature11993.
  • Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17(5):272–283. doi:10.1038/nrg.2016.20.
  • Chien KH, Chen SJ, Liu JH, Chang HM, Woung LC, Liang CM, Chen JT, Lin TJ, Chiou SH, Peng CH. Correlation between microRNA-34a levels and lens opacity severity in age-related cataracts. Eye (Lond). 2013;27(7):883–888. doi:10.1038/eye.2013.90.
  • Wang S, Yu M, Yan H, Liu J, Guo C. MiR-34a-5p Negatively Regulates Oxidative Stress on Lens Epithelial Cells by Silencing GPX3 - A Novel Target. Curr Eye Res. 2022;47(5):727–734. doi:10.1080/02713683.2022.2029905.
  • Xiang W, Lin H, Wang Q, Chen W, Liu Z, Chen H, Zhang H, Chen W. miR‑34a suppresses proliferation and induces apoptosis of human lens epithelial cells by targeting E2F3. Mol Med Rep. 2016;14(6):5049–5056. doi:10.3892/mmr.2016.5901.
  • Swart GW. Activated leukocyte cell adhesion molecule (CD166/ALCAM): developmental and mechanistic aspects of cell clustering and cell migration. Eur J Cell Biol. 2002;81(6):313–321. doi:10.1078/0171-9335-00256.
  • Mei L, Yan H, Wang S, Guo C, Zheng X, Yan B, Zhao J, Yang A. Upregulation of miR-630 induced by oxidative damage resists cell migration through targeting ALCAM in human lens epithelium cells. Curr Eye Res. 2020;45(2):153–161. doi:10.1080/02713683.2019.1656748.
  • Ransy C, Vaz C, Lombès A, Bouillaud F. Use of H(2)O(2) to cause oxidative stress, the catalase issue. IJMS. 2020;21(23):9149. doi:10.3390/ijms21239149.
  • Shao D, Zhu X, Sun W, Huo L, Chen W, Wang H, Liu B, Pan P. Investigation of the molecular mechanisms underlying myotonic dystrophy types 1 and 2 cataracts using microRNA‑target gene networks. Mol Med Rep. 2017;16(4):3737–3744. doi:10.3892/mmr.2017.7059.
  • Lanza M, Benincasa G, Costa D, Napoli C. Clinical role of epigenetics and network analysis in eye diseases: a translational science review. J Ophthalmol. 2019;2019:2424956. doi:10.1155/2019/2424956.
  • Gao W, Zhou X, Lin R. miR-378a-5p and miR-630 induce lens epithelial cell apoptosis in cataract via suppression of E2F3. Braz J Med Biol Res. 2020;53(5):e9608. doi:10.1590/1414-431x20209608.
  • Liu Y, Kawai K, Khashabi S, Deng C, Liu YH, Yiu S. Inactivation of Smad4 leads to impaired ocular development and cataract formation. Biochem Biophys Res Commun. 2010;400(4):476–482. doi:10.1016/j.bbrc.2010.08.065.
  • Solomon R, Donnenfeld ED. Recent advances and future frontiers in treating age-related cataracts. JAMA. 2003;290(2):248–251. doi:10.1001/jama.290.2.248.
  • Zhang Z, Yang T, Xiao J. Circular RNAs: promising biomarkers for human diseases. EBioMedicine. 2018;34:267–274. doi:10.1016/j.ebiom.2018.07.036.
  • He AT, Liu J, Li F, Yang BB. Targeting circular RNAs as a therapeutic approach: current strategies and challenges. Signal Transduct Target Ther. 2021;6(1):185.
  • Kim HJ, Baek SY, Sok DE, Lee KJ, Kim YJ, Kim MR. Neuroprotective activity of polyphenol-rich ribes diacanthum pall against oxidative stress in glutamate-stimulated HT-22 cells and a scopolamine-induced amnesia animal model. Antioxidants (Basel). 2020;9(9):895. doi:10.3390/antiox9090895.
  • Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–269. doi:10.1038/nrc1840.
  • Li Y, Liu S, Zhang F, Jiang P, Wu X, Liang Y. Expression of the microRNAs hsa-miR-15a and hsa-miR-16-1 in lens epithelial cells of patients with age-related cataract. Int J Clin Exp Med. 2015;8(2):2405–2410.
  • Lu B, Christensen IT, Ma LW, Yu T, Jiang LF, Wang CX, Feng L, Zhang JS, Yan QC, Wang XL. miR-211 regulates the antioxidant function of lens epithelial cells affected by age-related cataracts. Int J Ophthalmol. 2018;11(3):349–353.
  • Zhu J, Gong L, Zhao B. MicroRNA-4328 promotes lens epithelial cell apoptosis by targeting NLR family, apoptosis inhibitory protein in age-related cataract. Cell Biochem Funct. 2020;38(2):149–157. doi:10.1002/cbf.3453.
  • Darvishi B, Boroumandieh S, Majidzadeh AK, Salehi M, Jafari F, Farahmand L. The role of activated leukocyte cell adhesion molecule (ALCAM) in cancer progression, invasion, metastasis and recurrence: A novel cancer stem cell marker and tumor-specific prognostic marker. Exp Mol Pathol. 2020;115:104443. doi:10.1016/j.yexmp.2020.104443.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.