126
Views
1
CrossRef citations to date
0
Altmetric
Glaucoma

Diurnal Variation and Effects of Dilation and Sedation on Intraocular Pressure in Infant Rhesus Monkeys

, , &
Pages 289-296 | Received 09 Jul 2022, Accepted 26 Oct 2022, Published online: 10 Nov 2022

References

  • Tokoro T, Funata M, Akazawa Y. Influence of intraocular pressure on axial elongation. J Ocul Pharmacol. 1990;6(4):285–291. doi:10.1089/jop.1990.6.285.
  • Wang P, Chen S, Liu Y, Lin F, Song Y, Li T, Aung T, Zhang X. Lowering intraocular pressure: a potential approach for controlling high myopia progression. Invest Ophthalmol Vis Sci. 2021;62(14):17. doi:10.1167/iovs.62.14.17.
  • Rada JA, Nickla DL, Troilo D. Decreased proteoglycan synthesis associated with form deprivation myopia in mature primate eyes. Invest Ophthalmol Vis Sci. 2000;41(8):2050–2058. PMID 10892842. https://iovs.arvojournals.org/article.aspx?articleid=2123540.
  • Norton TT, Rada JA. Reduced extracellular matrix in mammalian sclera with induced myopia. Vision Res. 1995;35(9):1271–1281. doi:10.1016/0042-6989(94)00243-f.
  • Lee AJ, Saw SM, Gazzard G, Cheng A, Tan DT. Intraocular pressure associations with refractive error and axial length in children. Br J Ophthalmol. 2004;88(1):5–7. doi:10.1136/bjo.88.1.5.
  • Li SM, Iribarren R, Li H, Kang MT, Liu L, Wei SF, Stell WK, Martin G, Wang N. Intraocular pressure and myopia progression in Chinese children: the anyang childhood eye study. Br J Ophthalmol. 2019;103(3):349–354. doi:10.1136/bjophthalmol-2017-311831.
  • Quinn GE, Berlin JA, Young TL, Ziylan S, Stone RA. Association of intraocular pressure and myopia in children. Ophthalmology. 1995;102(2):180–185. doi:10.1016/s0161-6420(95)31038-x.
  • Liu JH, Kripke DF, Twa MD, Gokhale PA, Jones EI, Park EH, Meehan JE, Weinreb RN. Twenty-four-hour pattern of intraocular pressure in young adults with moderate to severe myopia. Invest Ophthalmol Vis Sci. 2002;43(7):2351–2355. PMID 12091437. https://iovs.arvojournals.org/article.aspx?articleid=2123572.
  • El-Nimri NW, Wildsoet CF. Effects of topical latanoprost on intraocular pressure and myopia progression in young guinea pigs. Invest Ophthalmol Vis Sci. 2018;59(6):2644–2651. doi:10.1167/iovs.17-22890.
  • Jin N, Stjernschantz J. Effects of prostaglandins on form deprivation myopia in the chick. Acta Ophthalmol Scand. 2000;78(5):495–500. doi:10.1034/j.1600-0420.2000.078005495.x.
  • Liu Y, Wang Y, Lv H, Jiang X, Zhang M, Li X. Alpha-adrenergic agonist brimonidine control of experimentally induced myopia in guinea pigs: a pilot study. Mol Vis. 2017;23:785–798. PMID 29204068. http://www.molvis.org/molvis/v23/785/.
  • Beach KM, Hung LF, She Z, Ostrin LA, Smith EL. The effects of latanoprost on negative-lens-induced myopia in rhesus monkeys. Invest Ophthalmol Vis Sci. 2019;60:5897. https://iovs.arvojournals.org/article.aspx?articleid=2745052.
  • Schmid KL, Abbott M, Humphries M, Pyne K, Wildsoet CF. Timolol lowers intraocular pressure but does not inhibit the development of experimental myopia in chick. Exp Eye Res. 2000;70(5):659–666. doi:10.1006/exer.2000.0834.
  • Glasser A, Howland HC. A history of studies of visual accommodation in birds. Q Rev Biol. 1996;71(4):475–509. doi:10.1086/419554.
  • Bar-Ilan A, Pessah NI. On the use of ketamine in ocular pharmacological studies. J Ocul Pharmacol. 1986;2(4):335–344. doi:10.1089/jop.1986.2.335.
  • Chae JJ, Prausnitz MR, Ethier CR. Effects of general anesthesia on intraocular pressure in rabbits. J Am Assoc Lab Anim Sci. 2021;60(1):91–95. doi:10.30802/AALAS-JAALAS-20-000016.
  • Drayna PC, Estrada C, Wang W, Saville BR, Arnold DH. Ketamine sedation is not associated with clinically meaningful elevation of intraocular pressure. Am J Emerg Med. 2012;30(7):1215–1218. doi:10.1016/j.ajem.2011.06.001.
  • Gandhi JK, Roy Chowdhury U, Manzar Z, Buck J, Levin LR, Fautsch MP, Marmorstein AD. Differential intraocular pressure measurements by tonometry and direct cannulation after treatment with soluble adenylyl cyclase inhibitors. J Ocul Pharmacol Ther. 2017;33(8):574–581. doi:10.1089/jop.2017.0027.
  • Ghaffari MS, Moghaddassi AP. Effects of ketamine-diazepam and ketamine-acepromazine combinations on intraocular pressure in rabbits. Vet Anaesth Analg. 2010;37(3):269–272. doi:10.1111/j.1467-2995.2010.00531.x.
  • Hofmeister EH, Mosunic CB, Torres BT, Ralph AG, Moore PA, Read MR. Effects of ketamine, diazepam, and their combination on intraocular pressures in clinically normal dogs. Am J Vet Res. 2006;67(7):1136–1139. doi:10.2460/ajvr.67.7.1136.
  • Jasien JV, Girkin CA, Downs JC. Effect of anesthesia on intraocular pressure measured with continuous wireless telemetry in nonhuman primates. Invest Ophthalmol Vis Sci. 2019;60(12):3830–3834. doi:10.1167/iovs.19-27758.
  • Lee HS, Kim DH, Kim SH, Kang MS, Suh HN. A comparative study on intraocular pressure under various anesthetics in cynomolgus monkeys (macaca fascicularis). Lab Anim Res. 2021;37(1):15. doi:10.1186/s42826-021-00092-2.
  • Nagdeve NG, Yaddanapudi S, Pandav SS. The effect of different doses of ketamine on intraocular pressure in anesthetized children. J Pediatr Ophthalmol Strabismus. 2006;43(4):219–223. doi:10.3928/01913913-20060701-03.
  • Schroder DC, Monteiro BG, Pytlak DB, Souza MCD, Mendonça AJ, Ribeiro AP. Effects of tramadol and acepromazine on intraocular pressure and pupil diameter in young healthy cats. Cienc Rural. 2018;48(3):e20170071. doi:10.1590/0103-8478cr20170071.
  • Tsuchiya S, Higashide T, Hatake S, Sugiyama K. Effect of inhalation anesthesia with isoflurane on circadian rhythm of murine intraocular pressure. Exp Eye Res. 2021;203:108420. doi:10.1016/j.exer.2020.108420.
  • Wadia S, Bhola R, Lorenz D, Padmanabhan P, Gross J, Stevenson M. Ketamine and intraocular pressure in children. Ann Emerg Med. 2014;64(4):385–388.e1. e381. doi:10.1016/j.annemergmed.2014.01.029.
  • Bito LZ, Merritt SQ, DeRousseau CJ. Intraocular pressure of rhesus monkey (Macaca mulatta). I. An initial survey of two free-breeding colonies. Invest Ophthalmol Vis Sci. 1979;18(8):785–793. PMID 110720. https://iovs.arvojournals.org/article.aspx?articleid=2158820.
  • Ribeiro AP, Crivelaro RM, Teixeira PPM, Trujillo DY, Guimarães PJ, Vicente WRR, Martins BC, Laus JL. Effects of different mydriatics on intraocular pressure, pupil diameter, and ruminal and intestinal motility in healthy sheep. Vet Ophthalmol. 2014;17(6):397–402. doi:10.1111/vop.12121.
  • Pukrushpan P, Tulvatana W, Kulvichit K. Intraocular pressure change following application of 1% tropicamide for diagnostic mydriasis. Acta Ophthalmol Scand. 2006;84(2):268–270. doi:10.1111/j.1600-0420.2005.00557.x.
  • Hung KC, Huang HM, Lin PW. Changes of intraocular pressure and refractive status in children following cycloplegic refraction with 1% cyclopentolate and 1% tropicamide. Taiwan J Ophthalmol. 2015;5(3):124–127. doi:10.1016/j.tjo.2015.06.001.
  • Kovalcuka L, Ilgazs A, Bandere D, Williams DL. Changes in intraocular pressure and horizontal pupil diameter during use of topical mydriatics in the canine eye. Open Vet J. 2017;7(1):16–22. doi:10.4314/ovj.v7i1.3.
  • Stadtbäumer K, Frommlet F, Nell B. Effects of mydriatics on intraocular pressure and pupil size in the normal feline eye. Vet Ophthalmol. 2006;9(4):233–237. doi:10.1111/j.1463-5224.2006.00474.x.
  • Stadtbäumer K, Köstlin RG, Zahn KJ. Effects of topical 0.5% tropicamide on intraocular pressure in normal cats. Vet Ophthalmol. 2002;5(2):107–112. doi:10.1046/j.1463-5224.2002.00226.x.
  • Taylor NR, Zele AJ, Vingrys AJ, Stanley RG. Variation in intraocular pressure following application of tropicamide in three different dog breeds. Vet Ophthalmol. 2007;10(1):8–11. doi:10.1111/j.1463-5224.2007.00485.x.
  • Chakraborty R, Ostrin LA, Nickla DL, Iuvone PM, Pardue MT, Stone RA. Circadian rhythms, refractive development, and myopia. Ophthalmic Physiol Opt. 2018;38(3):217–245. doi:10.1111/opo.12453.
  • Elsmo EJ, Kiland JA, Kaufman PL, McLellan GJ. Evaluation of rebound tonometry in non-human primates. Exp Eye Res. 2011;92(4):268–273. doi:10.1016/j.exer.2011.01.013.
  • Yu W, Cao G, Qiu J, Liu X, Ma J, Li N, Yu M, Yan N, Chen L, Pang IH. Evaluation of monkey intraocular pressure by rebound tonometer. Mol Vis. 2009; 15:2196–2201. PMID 19898690. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773735/.
  • De Rousseau CJ, Bito LZ. Intraocular pressure of rhesus monkeys (Macaca mulatta). Ii.Juvenile ocular hypertension and its apparent relationship to ocular growth. Exp Eye Res. 1981;32(4):407–417. doi:10.1016/s0014-4835(81)80020-6.
  • Smith EL, 3rd, Hung LF, She Z, Beach K, Ostrin LA, Jong M. Topically instilled caffeine selectively alters emmetropizing responses in infant rhesus monkeys. Exp Eye Res. 2021;203:108438. doi:10.1016/j.exer.2021.108438.
  • Ivers KM, Sredar N, Patel NB, Rajagopalan L, Queener HM, Twa MD, Harwerth RS, Porter J. In vivo changes in lamina cribrosa microarchitecture and optic nerve head structure in early experimental glaucoma. PLoS One. 2015;10(7):e0134223. doi:10.1371/journal.pone.0134223.
  • Tu S, Li K, Ding X, Zuo C, Hu D, Ge J. Tonovet versus tonopen in a high intraocular pressure monkey model. Mol Vis. 2019;25:391–399.
  • Komaromy AM, Brooks DE, Kubilis PS, Dawson WW, Sapp HL, Jr., Nelson G, Collins BR, Sherwood MB. Diurnal intraocular pressure curves in healthy rhesus macaques (Macaca mulatta) and rhesus macaques with normotensive and hypertensive primary open-angle glaucoma. J Glaucoma. 1998;7(2):128–131. PMID 9559500.
  • Jasien JV, Samuels BC, Johnston JM, Downs JC. Diurnal cycle of translaminar pressure in nonhuman primates quantified with continuous wireless telemetry. Invest Ophthalmol Vis Sci. 2020;61(2):37. doi:10.1167/iovs.61.2.37.
  • Jasien JV, Turner DC, Girkin CA, Downs JC. Cyclic pattern of intraocular pressure (IOP) and transient IOP fluctuations in nonhuman primates measured with continuous wireless telemetry. Curr Eye Res. 2019;44(11):1244–1252. doi:10.1080/02713683.2019.1629594.
  • Markert JE, Jasien JV, Turner DC, Huisingh C, Girkin CA, Downs JC. IOP, IOP transient impulse, ocular perfusion pressure, and mean arterial pressure relationships in nonhuman primates instrumented with telemetry. Invest Ophthalmol Vis Sci. 2018;59(11):4496–4505. PMID 30208417. doi:10.1167/iovs.18-23802.
  • McAllister F, Harwerth R, Patel N. Assessing the true intraocular pressure in the non-human primate. Optom Vis Sci. 2018;95(2):113–119. doi:10.1097/OPX.0000000000001171.
  • Turner DC, Samuels BC, Huisingh C, Girkin CA, Downs JC. The magnitude and time course of IOP change in response to body position change in nonhuman primates measured using continuous IOP telemetry. Invest Ophthalmol Vis Sci. 2017;58(14):6232–6240. doi:10.1167/iovs.17-22858.
  • Wilson KI, Godara P, Jasien JV, Zohner E, Morris JS, Girkin CA, Samuels BC, Downs JC. Intra-subject variability and diurnal cycle of ocular perfusion pressure as characterized by continuous telemetry in nonhuman primates. Invest Ophthalmol Vis Sci. 2020;61(6):7. doi:10.1167/iovs.61.6.7.
  • Smith EL, 3rd, Harwerth RS, Crawford MLJ, von Noorden GK. Observations on the effects of form deprivation on the refractive status of the monkey. Invest Ophthalmol Vis Sci. 1987;28(8):1236–1245. PMID 361054. https://iovs.arvojournals.org/article.aspx?articleid=2159963.
  • Weiss S, Schaeffel F. Diurnal growth rhythms in the chicken eye: relation to myopia development and retinal dopamine levels. J Comp Physiol A. 1993;172(3):263–270. doi:10.1007/BF00216608.
  • Ostrin LA, Wildsoet CF. Optic nerve head and intraocular pressure in the guinea pig eye. Exp Eye Res. 2016; 146:7–16. doi:10.1016/j.exer.2015.12.007.
  • Burfield HJ, Carkeet A, Ostrin LA. Ocular and systemic diurnal rhythms in emmetropic and myopic adults. Invest Ophthalmol Vis Sci. 2019;60(6):2237–2247. doi:10.1167/iovs.19-26711.
  • Bar-Ilan A. Diurnal and seasonal variations in intraocular pressure in the rabbit. Exp Eye Res. 1984;39(2):175–181. PMID 6541592. doi:10.1016/0014-4835(84)90006-x.
  • Dalvin LA, Fautsch MP. Analysis of circadian rhythm gene expression with reference to diurnal pattern of intraocular pressure in mice. Invest Ophthalmol Vis Sci. 2015;56(4):2657–2663. doi:10.1167/iovs.15-16449.
  • Lozano DC, Hartwick ATE, Twa MD. Circadian rhythm of intraocular pressure in the adult rat. Chronobiol Int. 2015;32(4):513–523. doi:10.3109/07420528.2015.1008135.
  • Fogagnolo P, Orzalesi N, Ferreras A, Rossetti L. The circadian curve of intraocular pressure: can we estimate its characteristics during office hours? Invest Ophthalmol Vis Sci. 2009;50(5):2209–2215. doi:10.1167/iovs.08-2889.
  • Hara T, Hara T, Tsuru T. Increase of peak intraocular pressure during sleep in reproduced diurnal changes by posture. Arch Ophthalmol. 2006;124(2):165–168. doi:10.1001/archopht.124.2.165.
  • Kiuchi T, Motoyama Y, Oshika T. Relationship of progression of visual field damage to postural changes in intraocular pressure in patients with normal-tension glaucoma. Ophthalmology. 2006;113(12):2150–2155. doi:10.1016/j.ophtha.2006.06.014.
  • Tsui E, Sehi M, Cheng RWF, Wan J, Wong T, Dorner S, Fisher JA, Hudson C. The impact of topical mydriatic ophthalmic solutions on retinal vascular reactivity and blood flow. Exp Eye Res. 2013;112:134–138. PMID 23701974. doi:10.1016/j.exer.2013.05.005.
  • Marchini G, Babighian S, Tosi R, Perfetti S, Bonomi L. Comparative study of the effects of 2% ibopamine, 10% phenylephrine, and 1% tropicamide on the anterior segment. Invest Ophthalmol Vis Sci. 2003;44(1):281–289. doi:10.1167/iovs.02-0221.,
  • Valle O. Effect of cyclopentolate on the aqueous dynamics in incipient or suspected open-angle glaucoma. Acta Ophthalmol Suppl. 1974;123:52–60. PMID 4368614.
  • Aleksandrova LR, Phillips AG, Wang YT. Antidepressant effects of ketamine and the roles of AMPA glutamate receptors and other mechanisms beyond NMDA receptor antagonism. J Psychiatry Neurosci. 2017;42(4):222–229. doi:10.1503/jpn.160175.
  • Hess EM, Riggs LM, Michaelides M, Gould TD. Mechanisms of ketamine and its metabolites as antidepressants. Biochem Pharmacol. 2022;197:114892. doi:10.1016/j.bcp.2021.114892.
  • Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 2018;23(4):801–811. doi:10.1038/mp.2017.255.
  • Sperber GO, Bill A. A method for near-continuous determination of aqueous humor flow; effects of anaesthetics, temperature and indomethacin. Exp Eye Res. 1984;39(4):435–453. doi:10.1016/0014-4835(84)90044-7.
  • Hayreh SS, Kardon RH, McAllister DL, Fleury PJ. Acepromazine. Effects on intraocular pressure. Arch Ophthalmol. 1991;109(1):119–124. doi:10.1001/archopht.1991.01080010121043.
  • Abe RY, Silva TC, Dantas I, Curado SX, Madeira MS, de Sousa LB, Costa VP. Can psychologic stress elevate intraocular pressure in healthy individuals? Ophthalmol Glaucoma. 2020;3(6):426–433. doi:10.1016/j.ogla.2020.06.011.
  • Jiménez R, Vera J. Effect of examination stress on intraocular pressure in university students. Appl Ergon. 2018;67:252–258. doi:10.1016/j.apergo.2017.10.010.
  • Miyazaki Y, Matsuo T, Kurabayashi Y. Immobilization stress induces elevation of intraocular pressure in rabbits. Ophthalmic Res. 2000;32(6):270–277. doi:10.1159/000055625.
  • Vera J, Redondo B, Álvarez-Rodríguez M, Molina R, Jiménez R. The intraocular pressure responses to oral academic examination: the influence of perceived levels of public speaking anxiety. Appl Ergon. 2020;88:103158. doi:10.1016/j.apergo.2020.103158.
  • Turner DC, Miranda M, Morris JS, Girkin CA, Downs JC. Acute stress increases intraocular pressure in nonhuman primates. Ophthalmol Glaucoma. 2019;2(4):210–214. doi:10.1016/j.ogla.2019.03.010.
  • Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–163. doi:10.1016/j.jcm.2016.02.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.