188
Views
0
CrossRef citations to date
0
Altmetric
Retina

Effects of Myopia on Rates of Change in Optical Coherence Tomography Measured Retinal Layer Thicknesses in People with Multiple Sclerosis and Healthy Controls

ORCID Icon, , , , , , , , , , , , , , , , ORCID Icon, , , , , , ORCID Icon, & show all
Pages 312-319 | Received 03 Mar 2022, Accepted 15 Nov 2022, Published online: 28 Nov 2022

References

  • Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, Wong TY, Naduvilath TJ, Resnikoff S. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036–1042. doi:10.1016/j.ophtha.2016.01.006.
  • Salehi MA, Nowroozi A, Gouravani M, Mohammadi S, Arevalo JF. Associations of refractive errors and retinal changes measured by optical coherence tomography: a systematic review and meta-analysis. Surv Ophthalmol. 2022;67(2):591–607. doi:10.1016/j.survophthal.2021.07.007.
  • Alonso R, Gonzalez-Moron D, Garcea O. Optical coherence tomography as a biomarker of neurodegeneration in multiple sclerosis: a review. Mult Scler Relat Disord. 2018;22:77–82. doi:10.1016/j.msard.2018.03.007.
  • Sotirchos ES, Saidha S. OCT is an alternative to MRI for monitoring MS – YES. Mult Scler. 2018;24(6):701–703. doi:10.1177/1352458517753722.
  • Lee M, Kim J, Shin Y, Jo Y, Kim J. Longitudinal changes in peripapillary retinal nerve fiber layer thickness in high myopia: a prospective, observational study. Ophthalmology. 2019;126(4):522–528. doi:10.1016/j.ophtha.2018.07.007.
  • Lee MW, Nam KY, Park HJ, Lim H, Kim J. Longitudinal changes in the ganglion cell-inner plexiform layer thickness in high myopia: a prospective observational study. Br J Ophthalmol. 2020;104(5):604–609. doi:10.1136/bjophthalmol-2019-314537.
  • Ratchford JN, Saidha S, Frohman TC, Newsome SD, Balcer LJ, Frohman EM, Calabresi PA, Sotirchos ES, Oh JA, Seigo MA, et al. Active MS is associated with accelerated retinal ganglion cell/inner plexiform layer thinning. Neurology. 2013;80(1):47–54. doi:10.1212/WNL.0b013e31827b1a1c.
  • Saidha S, Al-Louzi O, Ratchford JN, Bhargava P, Oh J, Newsome SD, Prince JL, Pham D, Roy S, van Zijl P, et al. Optical coherence tomography reflects brain atrophy in multiple sclerosis: a four-year study. Ann Neurol. 2015;78(5):801–813. doi:10.1002/ana.24487.
  • Button J, Al-Louzi O, Lang A, Bhargava P, Newsome SD, Frohman T, Balcer LJ, Frohman EM, Prince J, Calabresi PA, et al. Disease-modifying therapies modulate retinal atrophy in multiple sclerosis: a retrospective study. Neurology. 2017;88(6):525–532. doi:10.1212/WNL.0000000000003582.
  • Polman CH, Reingold SC, Edan G, Filippi M, Hartung H, Kappos L, Lublin FD, Metz LM, McFarland HF, O'Connor PW, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the "McDonald criteria. Ann Neurol. 2005;58(6):840–846. doi:10.1002/ana.20703.
  • Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sorensen PS, Thompson AJ, Wolinsky JS, Balcer LJ, Banwell B, Barkhof F, et al. Defining the clinical course of multiple sclerosis the 2013 revisions. Neurology. 2014;83(3):278–286. doi:10.1212/WNL.0000000000000560.
  • Flitcroft DI, He M, Jonas JB, Jong M, Naidoo K, Ohno-Matsui K, Rahi J, Resnikoff S, Vitale S, Yannuzzi L. IMI – defining and classifying myopia: a proposed set of standards for clinical and epidemiologic studies. Invest Ophthalmol Vis Sci. 2019;60(3):M20–M30. doi:10.1167/iovs.18-25957.
  • Wang J, Liu J, Ma W, Zhang Q, Li R, He X, Liu L. Prevalence of myopia in 3–14-year-old Chinese children: a school-based cross-sectional study in Chengdu. BMC Ophthalmol. 2021;21(1):318. doi:10.1186/s12886-021-02071-6.
  • Syc SB, Warner CV, Hiremath GS, Farrell SK, Ratchford JN, Conger A, Frohman T, Cutter G, Balcer LJ, Frohman EM, et al. Reproducibility of high-resolution optical coherence tomography in multiple sclerosis. Mult Scler. 2010;16(7):829–839. doi:10.1177/1352458510371640.
  • Tewarie P, Balk L, Costello F, Green A, Martin R, Schippling S, Petzold A. The OSCAR-IB consensus criteria for retinal OCT quality assessment. PLoS One. 2012;7(4):e34823. doi:10.1371/journal.pone.0034823.
  • Schippling S, Balk LJ, Costello F, Albrecht P, Balcer L, Calabresi PA, Frederiksen JL, Frohman E, Green AJ, Klistorner A, et al. Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria. Mult Scler. 2015;21(2):163–170. doi:10.1177/1352458514538110.
  • Lang A, Carass A, Hauser M, Sotirchos ES, Calabresi PA, Ying HS, Prince JL. Retinal layer segmentation of macular OCT images using boundary classification. Biomed Opt Express. 2013;4(7):1133–1152. doi:10.1364/BOE.4.001133.
  • Shin H, Park HL, Park CK. The effect of myopic optic disc tilt on measurement of spectral-domain optical coherence tomography parameters. Br J Ophthalmol. 2015;99(1):69–74. doi:10.1136/bjophthalmol-2014-305259.
  • Kang SH, Hong SW, Im SK, Lee SH, Ahn MD. Effect of myopia on the thickness of the retinal nerve fiber layer measured by cirrus HD optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51(8):4075–4083. doi:10.1167/iovs.09-4737.
  • Sotirchos ES, Gonzalez Caldito N, Filippatou A, Fitzgerald KC, Murphy OC, Lambe J, Nguyen J, Button J, Ogbuokiri E, Crainiceanu CM, et al. Progressive multiple sclerosis is associated with faster and specific retinal layer atrophy. Ann Neurol. 2020;87(6):885–896. doi:10.1002/ana.25738.
  • Vitale S, Sperduto RD, Ferris FL. Increased prevalence of myopia in the united states between 1971–1972 and 1999–2004. Arch Ophthalmol. 2009;127(12):1632–1639. doi:10.1001/archophthalmol.2009.303.
  • Nolan R, Akhand O, Rizzo J, Galetta S, Balcer L. Evolution of visual outcomes in clinical trials for multiple sclerosis disease-modifying therapies. J Neuroophthalmol. 2018;38(2):202–209. doi:10.1097/WNO.0000000000000662.
  • Zhang Z, He X, Zhu J, Jiang K, Zheng W, Ke B. Macular measurements using optical coherence tomography in healthy chinese school age children. Invest Ophthalmol Vis Sci. 2011;52(9):6377–6383. doi:10.1167/iovs.11-7477.
  • Wu P, Chen Y, Chen C, Chen Y, Shin S, Yang H, Kuo H. Assessment of macular retinal thickness and volume in normal eyes and highly myopic eyes with third-generation optical coherence tomography. Eye (Lond). 2008;22(4):551–555. doi:10.1038/sj.eye.6702789.
  • Chen S, Wang B, Dong N, Ren X, Zhang T, Xiao L. Macular measurements using spectral-domain optical coherence tomography in Chinese myopic children. Invest Ophthalmol Vis Sci. 2014;55(11):7410–7416. doi:10.1167/iovs.14-13894.
  • Ng DSC, Cheung CYL, Luk FO, Mohamed S, Brelen ME, Yam JCS, Tsang CW, Lai TYY. Advances of optical coherence tomography in myopia and pathologic myopia. Eye (Lond). 2016;30(7):901–916. doi:10.1038/eye.2016.47.
  • Yun S, Jo YH, Sung KR, Jeong D. Age-related physiologic thinning rate of the retinal nerve fiber layer in different levels of myopia. J Ophthalmol. 2020;2020:1873581. doi:10.1155/2020/1873581.
  • Khan MH, Lam AKC, Armitage JA, Hanna L, To C, Gentle A. Impact of axial eye size on retinal microvasculature density in the macular region. J Clin Med. 2020;9(8):2539. doi:10.3390/jcm9082539
  • Sanchez-Cano A, Baraibar B, Pablo LE, Honrubia FM. Magnification characteristics of the optical coherence tomograph STRATUS OCT 3000. Ophthalmic Physiol Opt. 2008;28(1):21–28. doi:10.1111/j.1475-1313.2007.00527.x
  • Ctori I, Gruppetta S, Huntjens B. The effects of ocular magnification on spectralis spectral domain optical coherence tomography scan length. Graefes Arch Clin Exp Ophthalmol. 2015;253(5):733–738. doi:10.1007/s00417-014-2915-9.
  • Higashide T, Ohkubo S, Hangai M, Ito Y, Shimada N, Ohno-Matsui K, Terasaki H, Sugiyama K, Chew P, Li KKW, et al. Influence of clinical factors and magnification correction on normal thickness profiles of macular retinal layers using optical coherence tomography. PLoS One. 2016;11(1):e0147782. doi:10.1371/journal.pone.0147782.
  • Hong SW, Ahn MD, Kang SH, Im SK. Analysis of peripapillary retinal nerve fiber distribution in normal young adults. Invest Ophthalmol Vis Sci. 2010;51(7):3515–3523. doi:10.1167/iovs.09-4888.
  • Chen J, Kardon R. Avoiding clinical misinterpretation and artifacts of optical coherence tomography analysis of the optic nerve, retinal nerve fiber layer, and ganglion cell layer. J Neuroophthalmol. 2016;36(4):417–438. doi:10.1097/WNO.0000000000000422.
  • Wolffsohn JS, Flitcroft DI, Gifford KL, Jong M, Jones L, Klaver CCW, Logan NS, Naidoo K, Resnikoff S, Sankaridurg P, et al. IMI - myopia control reports overview and introduction. Invest Ophthalmol Vis Sci. 2019;60(3):M1–M19. doi:10.1167/iovs.18-25980.
  • Du R, Xie S, Igarashi-Yokoi T, Watanabe T, Uramoto K, Takahashi H, Nakao N, Yoshida T, Fang Y, Ohno-Matsui K. Continued increase of axial length and its risk factors in adults with high myopia. JAMA Ophthalmol. 2021;139(10):1096–1103. doi:10.1001/jamaophthalmol.2021.3303.
  • Wosik J, Patrzykont M, Pniewski J. Comparison of refractive error measurements by three different models of autorefractors and subjective refraction in young adults. J Opt Soc Am A Opt Image Sci Vis. 2019;36(4):B1–B6. doi:10.1364/JOSAA.36.0000B1.
  • Saidha S, Syc SB, Ibrahim MA, Eckstein C, Warner CV, Farrell SK, Oakley JD, Durbin MK, Meyer SA, Balcer LJ, et al. Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain. 2011;134(Pt 2):518–533. doi:10.1093/brain/awq346.
  • Bhargava P, Lang A, Al-Louzi O, Carass A, Prince J, Calabresi PA, Saidha S. Applying an open-source segmentation algorithm to different OCT devices in multiple sclerosis patients and healthy controls: implications for clinical trials. Mult Scler Int. 2015;2015:136295. doi:10.1155/2015/136295.
  • Carpineto P, Nubile M, Agnifili L, Toto L, Aharrh-Gnama A, Mastropasqua R, Di Antonio L, Fasanella V, Mastropasqua A. Reproducibility and repeatability of cirrus™ HD-OCT peripapillary retinal nerve fibre layer thickness measurements in young normal subjects. Ophthalmologica. 2012;227(3):139–145. doi:10.1159/000334967.
  • Garcia‐Martin E, Pinilla I, Idoipe M, Fuertes I, Pueyo V. Intra and interoperator reproducibility of retinal nerve fibre and macular thickness measurements using cirrus Fourier‐domain OCT. Acta Ophthalmol. 2011;89(1):e23–e29. doi:10.1111/j.1755-3768.2010.02045.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.