135
Views
0
CrossRef citations to date
0
Altmetric
Lens and Refractive Surgery

Inhibition of Posterior Capsule Opacification by Adenovirus-Mediated Delivery of Short Hairpin RNAs Targeting TERT in a Rabbit Model

ORCID Icon, , , &
Pages 618-626 | Received 23 Sep 2022, Accepted 18 Mar 2023, Published online: 10 Apr 2023

References

  • Wormstone IM, Wormstone YM, Smith AJO, Eldred JA. Posterior capsule opacification: what’s in the bag? Prog Retin Eye Res. 2020;82:100905.
  • Leydolt C, Schartmüller D, Schwarzenbacher L, Röggla V, Schriefl S, Menapace R. Posterior capsule opacification with two hydrophobic acrylic intraocular lenses: 3-year results of a randomized trial. Am J Ophthalmol. 2020;217:224–231. doi:10.1016/j.ajo.2020.04.011.
  • Gu X, Chen X, Jin G, Wang L, Zhang E, Wang W, Liu Z, Luo L. Early-onset posterior capsule opacification: incidence, severity, and risk factors. Ophthalmol Ther. 2022;11(1):113–123. doi:10.1007/s40123-021-00408-4.
  • Tassignon MJ. Elimination of posterior capsule opacification. Ophthalmology. 2020;127(4S):S27–S28. doi:10.1016/j.ophtha.2019.12.029.
  • Aslam TM, Devlin H, Dhillon B. Use of Nd: YAG laser capsulotomy. Surv Ophthalmol. 2003;48(6):594–612. doi:10.1016/j.survophthal.2003.08.002.
  • Liu H, Liu X, Chen Y, Wang D, Li Y, Chen H, Ma X. Effect of Nd: YAG laser capsulotomy on the risk for retinal detachment after cataract surgery: systematic review and meta-analysis. J Cataract Refract Surg. 2022;48(2):238–244. doi:10.1097/j.jcrs.0000000000000755.
  • Fichtner JE, Patnaik J, Christopher KL, Petrash JM. Cataract inhibitors: present needs and future challenges. Chem Biol Interact. 2021;349:109679. doi:10.1016/j.cbi.2021.109679.
  • Lee EY, Reddy D, Sabri K. Novel technique for positioning children under general anesthesia for ophthalmic YAG laser capsulotomy using the Hug-U-Vac® surgical positioning system. Can J Anaesth. 2020;67(11):1692–1693. doi:10.1007/s12630-020-01769-3.
  • Saika S. Relationship between posterior capsule opacification and intraocular lens biocompatibility. Prog Retin Eye Res. 2004;23(3):283–305. doi:10.1016/j.preteyeres.2004.02.004.
  • Liu Z, Huang S, Zheng Y, Zhou T, Hu L, Xiong L, Li DW, Liu Y. The lens epithelium as a major determinant in the development, maintenance, and regeneration of the crystalline lens. Prog Retin Eye Res. 2022;92:101112.
  • Greider CW. Telomerase activity, cell proliferation, and cancer. Proc Natl Acad Sci U S A. 1998;95(1):90–92. doi:10.1073/pnas.95.1.90.
  • Shay JW, Wright WE. Telomeres and telomerase: three decades of progress. Nat Rev Genet. 2019;20(5):299–309. doi:10.1038/s41576-019-0099-1.
  • Colitz CM, Davidson MG, McGahan MC. Telomerase activity in lens epithelial cells of normal and cataractous lenses. Exp Eye Res. 1999;69(6):641–649. doi:10.1006/exer.1999.0739.
  • Chandler HL, Webb TR, Barden CA, Thangavelu M, Kulp SK, Cs C, Colitz CM. The effect of phosphorylated Akt inhibition on posterior capsule opacification in an ex vivo canine model. Mol Vis. 2010;16:2202–2214.
  • Lü ZG, Huang WL, Jiang YX, Liu TJ. Expression and significance of telomerase activity of lens epithelial cells in posterior capsule opacification of rabbits. Zhonghua Yan Ke Za Zhi. 2008;44:902–905.
  • Malecaze F, Couderc B, de Neuville S, Serres B, Mallet J, Douin-Echinard V, Manenti S, Revah F, Darbon JM. Adenovirus-mediated suicide gene transduction: feasibility in lens epithelium and in prevention of po sterior capsule opacification in rabbits. Hum Gene Ther. 1999;10(14):2365–2372. doi:10.1089/10430349950017013.
  • Keshav V, Henderson BA. Astigmatism management with intraocular lens surgery. Ophthalmology. 2021;128(11):e153–e163. doi:10.1016/j.ophtha.2020.08.011.
  • Goto S, Maeda N. Corneal topography for intraocular lens selection in refractive cataract surgery. Ophthalmology. 2021;128(11):e142–e152. doi:10.1016/j.ophtha.2020.11.016.
  • Bao X, Hou M, Qin Y, Luo F, Shang F, Wu M. Effect of an MG132-sustained drug delivery capsular ring on the inhibition of posterior capsule opacification in a rabbit model. J Ocul Pharmacol th. 2017;33(2):103–110. doi:10.1089/jop.2016.0163.
  • Colitz CM, Barden CA, Lu P, Chandler HL. Expression and characterization of the catalytic subunit of telomerase in normal and cataractous canine lens epithelial cells. Mol Vis. 2006;12:1067–1076.
  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279(5349):349–352. doi:10.1126/science.279.5349.349.
  • Akiyama M, Yamada O, Hideshima T, Yanagisawa T, Yokoi K, Fujisawa K, Eto Y, Yamada H, Anderson KC. TNFalpha induces rapid activation and nuclear translocation of telomerase in human lymphocytes. Biochem Bioph Res Commun. 2004;316(2):528–532. doi:10.1016/j.bbrc.2004.02.080.
  • Jagadeesh S, Kyo S, Banerjee PP. Genistein represses telomerase activity via both transcriptional and posttranslational mechanisms in human prostate cancer cells. Cancer Res. 2006;66(4):2107–2115. doi:10.1158/0008-5472.CAN-05-2494.
  • Wang Y, Hu LF, Zhou TJ, Qi LY, Xing L, Lee J, Wang FZ, Oh YK, Jiang HL. Gene therapy strategies for rare monogenic disorders with nuclear or mitochondrial gene mutations. Biomaterials. 2021; 277:121108. doi:10.1016/j.biomaterials.2021.121108.
  • Kumar S, Fry LE, Wang JH, Martin KR, Hewitt AW, Chen FK, Liu GS. RNA-targeting strategies as a platform for ocular gene therapy. Prog Retin Eye Res. 2022;92:101110.
  • Sarkar A, Jayesh Sodha S, Junnuthula V, Kolimi P, Dyawanapelly S. Novel and investigational therapies for wet and dry age-related macular degeneration. Drug Discov Today. 2022;27(8):2322–2332. doi:10.1016/j.drudis.2022.04.013.
  • Lam BL, Feuer WJ, Davis JL, Porciatti V, Yu H, Levy RB, Vanner E, Guy J. Hereditary optic neuropathy gene therapy: adverse events and visual acuity results of all patient groups. Am J Ophthalmol. 2022;241:262–271. doi:10.1016/j.ajo.2022.02.023.
  • Parker MA, Erker LR, Audo I, Choi D, Mohand-Said S, Sestakauskas K, Benoit P, Appelqvist T, Krahmer M, Ségaut-Prévost C, et al. Three-year safety results of SAR422459 (EIAV-ABCA4) gene therapy in patients with ABCA4-associated Stargardt disease: an open-label dose-escalation phase I/IIa clinical trial, cohorts 1–5. Am J Ophthalmol. 2022;240:285–301. doi:10.1016/j.ajo.2022.02.013.
  • Fischer MD, Ochakovski GA, Beier B, Seitz IP, Vaheb Y, Kortuem C, Reichel FFL, Kuehlewein L, Kahle NA, Peters T, et al. Efficacy and safety of retinal gene therapy using adeno-associated virus vector for patients with choroideremia: a randomized clinical trial. JAMA Ophthalmol. 2019;137(11):1247–1254. doi:10.1001/jamaophthalmol.2019.3278.
  • Keeler AM, Flotte TR. Recombinant adeno-associated virus gene therapy in light of Luxturna (and Zolgensma and Glybera): where are we, and how did we get here? Annu Rev Virol. 2019;6(1):601–621. doi:10.1146/annurev-virology-092818-015530.
  • Bao X, Hou M, Peng R, Luo F, Wu M. Expression of dominant negative K6W-ubiquitin in the lens epithelium via an adenoviral vector delays posterior capsule opacification in a rabbit model. Curr Mol Med. 2017;17:160–168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.