160
Views
1
CrossRef citations to date
0
Altmetric
Vitreous and Retina

Salidroside Inhibits Ganglion Cell Apoptosis by Suppressing the Müller Cell Inflammatory Response in Diabetic Retinopathy

, , , , , , & show all
Pages 758-769 | Received 27 Nov 2022, Accepted 13 Apr 2023, Published online: 07 Jun 2023

References

  • Wang W, Lo ACY. Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci. 2018;19(6):1816.
  • Vujosevic S, Aldington SJ, Silva P, Hernández C, Scanlon P, Peto T, Simó R. Screening for diabetic retinopathy: new perspectives and challenges. Lancet Diabetes Endocrinol. 2020;8(4):337–347. doi:10.1016/S2213-8587(19)30411-5.
  • Lin KY, Hsih WH, Lin YB, Wen CY, Chang TJ. Update in the epidemiology, risk factors, screening, and treatment of diabetic retinopathy. J Diabetes Investig. 2021;12(8):1322–1325. doi:10.1111/jdi.13480.
  • Ghamdi AHA. Clinical predictors of diabetic retinopathy progression; a systematic review. Curr Diabetes Rev. 2020;16(3):242–247.
  • Sabanayagam C, Banu R, Chee ML, Lee R, Wang YX, Tan G, Jonas JB, Lamoureux EL, Cheng C-Y, Klein BEK, et al. Incidence and progression of diabetic retinopathy: a systematic review. Lancet Diabetes Endocrinol. 2019;7(2):140–149. doi:10.1016/S2213-8587(18)30128-1.
  • Li Y, Mitchell W, Elze T, Zebardast N. Association between diabetes, diabetic retinopathy, and glaucoma. Curr Diab Rep. 2021;21(10):38. doi:10.1007/s11892-021-01404-5.
  • Yin L, Zhang D, Ren Q, Su X, Sun Z. Prevalence and risk factors of diabetic retinopathy in diabetic patients: a community based cross-sectional study. Medicine (Baltimore)). 2020;99(9):e19236. doi:10.1097/MD.0000000000019236.
  • Youngblood H, Robinson R, Sharma A, Sharma S. Proteomic biomarkers of retinal inflammation in diabetic retinopathy. Int J Mol Sci. 2019;20(19):4755.
  • Coughlin BA, Feenstra DJ, Mohr S. Müller cells and diabetic retinopathy. Vision Res. 2017;139:93–100. doi:10.1016/j.visres.2017.03.013.
  • Keir M, Yi Y, Lu T, Ghilardi N. The role of IL-22 in intestinal health and disease. J Exp Med. 2020;217(3):e20192195.
  • Mattapallil MJ, Kielczewski JL, Zárate-Bladés CR, St Leger AJ, Raychaudhuri K, Silver PB, Jittayasothorn Y, Chan CC, Caspi RR. Interleukin 22 ameliorates neuropathology and protects from central nervous system autoimmunity. J Autoimmun. 2019;102:65–76. doi:10.1016/j.jaut.2019.04.017.
  • Famiglietti EV. Morphological identification and systematic classification of mammalian retinal ganglion cells. I. Rabbit retinal ganglion cells. J Comp Neurol. 2020;528(18):3305–3450. doi:10.1002/cne.24998.
  • Stutzki H, Leibig C, Andreadaki A, Fischer D, Zeck G. Inflammatory stimulation preserves physiological properties of retinal ganglion cells after optic nerve injury. Front Cell Neurosci. 2014;8:38. doi:10.3389/fncel.2014.00038.
  • Adamiec-Mroczek J, Zając-Pytrus H, Misiuk-Hojło M. Caspase-dependent apoptosis of retinal ganglion cells during the development of diabetic retinopathy. Adv Clin Exp Med. 2015;24(3):531–535. doi:10.17219/acem/31805.
  • Soni D, Sagar P, Takkar B. Diabetic retinal neurodegeneration as a form of diabetic retinopathy. Int Ophthalmol. 2021;41(9):3223–3248. doi:10.1007/s10792-021-01864-4.
  • Becker K, Klein H, Simon E, Viollet C, Haslinger C, Leparc G, Schultheis C, Chong V, Kuehn MH, Fernandez-Albert F, et al. and others. In-depth transcriptomic analysis of human retina reveals molecular mechanisms underlying diabetic retinopathy. Sci Rep. 2021;11(1):10494. doi:10.1038/s41598-021-88698-3.
  • Goldman D. Müller glial cell reprogramming and retina regeneration. Nat Rev Neurosci. 2014;15(7):431–442. doi:10.1038/nrn3723.
  • Li Q, Cheng Y, Zhang S, Sun X, Wu J. TRPV4-induced Müller cell gliosis and TNF-α elevation-mediated retinal ganglion cell apoptosis in glaucomatous rats via JAK2/STAT3/NF-κB pathway. J Neuroinflammation. 2021;18(1):271. doi:10.1186/s12974-021-02315-8.
  • Wang JJ, Zhu M, Le YZ. Functions of Müller cell-derived vascular endothelial growth factor in diabetic retinopathy. World J Diabetes. 2015;6(5):726–733. doi:10.4239/wjd.v6.i5.726.
  • Ghaseminejad F, Kaplan L, Pfaller AM, Hauck SM, Grosche A. The role of Müller cell glucocorticoid signaling in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2020;258(2):221–230. doi:10.1007/s00417-019-04521-w.
  • Wu YR, Hashiguchi T, Sho J, Chiou SH, Takahashi M, Mandai M. Transplanted mouse embryonic stem cell-derived retinal ganglion cells integrate and form synapses in a retinal ganglion cell-depleted mouse model. Invest Ophthalmol Vis Sci. 2021;62(13):26. doi:10.1167/iovs.62.13.26.
  • Xu F, Xu J, Xiong X, Deng Y. Salidroside inhibits MAPK, NF-κB, and STAT3 pathways in psoriasis-associated oxidative stress via SIRT1 activation. Redox Rep. 2019;24(1):70–74. doi:10.1080/13510002.2019.1658377.
  • Li R, Guo Y, Zhang Y, Zhang X, Zhu L, Yan T. Salidroside ameliorates renal interstitial fibrosis by inhibiting the TLR4/NF-κB and MAPK signaling pathways. Int J Mol Sci. 2019;20(5):1103.
  • Li R, Chen J. Salidroside protects dopaminergic neurons by enhancing PINK1/Parkin-mediated mitophagy. Oxid Med Cell Longev. 2019;2019:9341018. doi:10.1155/2019/9341018.
  • Yao F, Jiang X, Qiu L, Peng Z, Zheng W, Ding L, Xia X. Long-term oral administration of salidroside alleviates diabetic retinopathy in db/db mice. Front Endocrinol (Lausanne)). 2022;13:861452. doi:10.3389/fendo.2022.861452.
  • Rong L, Li Z, Leng X, Li H, Ma Y, Chen Y, Song F. Salidroside induces apoptosis and protective autophagy in human gastric cancer AGS cells through the PI3K/Akt/mTOR pathway. Biomed Pharmacother. 2020;122:109726. doi:10.1016/j.biopha.2019.109726.
  • Hu R, Wang MQ, Ni SH, Wang M, Liu LY, You HY, Wu XH, Wang YJ, Lu L, Wei LB. Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-κB/NLRP3 signaling pathway in AGEs-induced HUVECs. Eur J Pharmacol. 2020;867:172797. doi:10.1016/j.ejphar.2019.172797.
  • Forrester JV, Kuffova L, Delibegovic M. The role of inflammation in diabetic retinopathy. Front Immunol. 2020;11:583687. doi:10.3389/fimmu.2020.583687.
  • Ucgun NI, Zeki-Fikret C, Yildirim Z. Inflammation and diabetic retinopathy. Mol Vis. 2020;26:718–721.
  • Taurone S, Ralli M, Nebbioso M, Greco A, Artico M, Attanasio G, Gharbiya M, Plateroti AM, Zamai L, Micera A. The role of inflammation in diabetic retinopathy: a review. Eur Rev Med Pharmacol Sci. 2020;24(20):10319–10329.
  • Kaštelan S, Orešković I, Bišćan F, Kaštelan H, Gverović AA. Inflammatory and angiogenic biomarkers in diabetic retinopathy. Biochem Med (Zagreb). 2020;30(3):030502.
  • Chung YR, Kim YH, Ha SJ, Byeon HE, Cho CH, Kim JH, Lee K. Role of inflammation in classification of diabetic macular edema by optical coherence tomography. J Diabetes Res. 2019;2019:8164250. doi:10.1155/2019/8164250.
  • Chalke SD, Kale PP. Combinational approaches targeting neurodegeneration, oxidative stress, and inflammation in the treatment of diabetic retinopathy. Curr Drug Targets. 2021;22(16):1810–1824. doi:10.2174/1389450122666210319113136.
  • Wang Y, Liu X, Zhu L, Li W, Li Z, Lu X, Liu J, Hua W, Zhou Y, Gu Y, et al. PG545 alleviates diabetic retinopathy by promoting retinal Müller cell autophagy to inhibit the inflammatory response. Biochem Biophys Res Commun. 2020;531(4):452–458. doi:10.1016/j.bbrc.2020.07.134.
  • Le YZ, Xu B, Chucair-Elliott AJ, Zhang H, Zhu M. VEGF mediates retinal Müller cell viability and neuroprotection through BDNF in diabetes. Biomolecules. 2021;11(5):712. doi:10.3390/biom11050712.
  • Dudakov JA, Hanash AM, van den Brink MR. Interleukin-22: immunobiology and pathology. Annu Rev Immunol. 2015;33:747–785. doi:10.1146/annurev-immunol-032414-112123.
  • Lim C, Savan R. The role of the IL-22/IL-22R1 axis in cancer. Cytokine Growth Factor Rev. 2014;25(3):257–271. doi:10.1016/j.cytogfr.2014.04.005.
  • Chen H, Wen F, Zhang X, Su SB. Expression of T-helper-associated cytokines in patients with type 2 diabetes mellitus with retinopathy. Mol Vis. 2012;18:219–226.
  • Reinhard K, Mutter M, Gustafsson E, Gustafsson L, Vaegler M, Schultheiss M, Müller S, Yoeruek E, Schrader M, Münch TA. Hypothermia promotes survival of ischemic retinal ganglion cells. Invest Ophthalmol Vis Sci. 2016;57(2):658–663. doi:10.1167/iovs.15-17751.
  • Jones I, Hägglund AC, Carlsson L. Reduced mTORC1-signaling in retinal ganglion cells leads to vascular retinopathy. Dev Dyn. 2022;251(2):321–335. doi:10.1002/dvdy.389.
  • Obara EA, Hannibal J, Heegaard S, Fahrenkrug J. Loss of melanopsin-expressing retinal ganglion cells in patients with diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017;58(4):2187–2192. doi:10.1167/iovs.16-21168.
  • Singhal S, Bhatia B, Jayaram H, Becker S, Jones MF, Cottrill PB, Khaw PT, Salt TE, Limb GA. Human Müller glia with stem cell characteristics differentiate into retinal ganglion cell (RGC) precursors in vitro and partially restore RGC function in vivo following transplantation. Stem Cells Transl Med. 2012;1(3):188–199. doi:10.5966/sctm.2011-0005.
  • Taguchi M, Shinozaki Y, Kashiwagi K, Shigetomi E, Robaye B, Koizumi S. Müller cell-mediated neurite outgrowth of the retinal ganglion cells via P2Y(6) receptor signals. J Neurochem. 2016;136(4):741–751. doi:10.1111/jnc.13427.
  • Roy S, Kim D, Lim R. Cell-cell communication in diabetic retinopathy. Vision Res. 2017;139:115–122. doi:10.1016/j.visres.2017.04.014.
  • Ito T, Hirose K, Nakajima H. Bidirectional roles of IL-22 in the pathogenesis of allergic airway inflammation. Allergol Int. 2019;68(1):4–8. doi:10.1016/j.alit.2018.10.002.
  • Mohebbi SR, Karimi K, Rostami F, Kazemian S, Azimzadeh P, Mirtalebi H, Nazemalhosseini-Mojarad E, Asadzadeh Aghdaei H, Vafaee R, Heydari MH. Association of IL-22 and IL-22RA1 gene variants in Iranian patients with colorectal cancer. Gastroenterol Hepatol Bed Bench. 2021;14(Suppl1):S58–s65.
  • Wang Y, Yu H, Li J, Liu W, Yu S, Lv P, Zhao L, Wang X, Zuo Z, Liu X. Th22 cells induce Müller cell activation via the Act1/TRAF6 pathway in diabetic retinopathy. Cell Tissue Res. 2022;390(3):367–383. doi:10.1007/s00441-022-03689-8.
  • Zenewicz LA. IL-22 binding protein (IL-22BP) in the regulation of IL-22 biology. Front Immunol. 2021;12:766586. doi:10.3389/fimmu.2021.766586.
  • Lücke J, Sabihi M, Zhang T, Bauditz LF, Shiri AM, Giannou AD, Huber S. The good and the bad about separation anxiety: roles of IL-22 and IL-22BP in liver pathologies. Semin Immunopathol. 2021;43(4):591–607. doi:10.1007/s00281-021-00854-z.
  • Bai XL, Deng XL, Wu GJ, Li WJ, Jin S. Rhodiola and salidroside in the treatment of metabolic disorders. Mini Rev Med Chem. 2019;19(19):1611–1626. doi:10.2174/1389557519666190903115424.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.