227
Views
0
CrossRef citations to date
0
Altmetric
Vitreous and Retina

CD44 Drives M1 Macrophage Polarization in Diabetic Retinopathy

, , , &
Pages 770-780 | Received 01 Dec 2022, Accepted 28 Apr 2023, Published online: 16 May 2023

References

  • Grauslund J. Diabetic retinopathy screening in the emerging era of artificial intelligence. Diabetologia. 2022;65(9):1415–1423. doi:10.1007/s00125-022-05727-0.
  • Atef MM, Shafik NM, Hafez YM, Watany MM, Selim A, Shafik HM, Safwat El-Deeb O. The evolving role of long noncoding RNA HIF1A-AS2 in diabetic retinopathy: a cross-link axis between hypoxia, oxidative stress and angiogenesis via MAPK/VEGF-dependent pathway. Redox Rep. 2022;27(1):70–78. doi:10.1080/13510002.2022.2050086.
  • Simó R, Hernández C. New Insights into Treating Early and Advanced Stage Diabetic Retinopathy. IJMS. 2022;23(15):8513. doi:10.3390/ijms23158513.
  • Chen S, Qian Y, Lin Q, Chen Z, Xiang Z, Cui L, Sun J, Qin X, Xu Y, Lu L, et al. Increased serum 12-hydroxyeicosatetraenoic acid levels are correlated with an increased risk of diabetic retinopathy in both children and adults with diabetes. Acta Diabetol. 2022;59(11):1505–1513. doi:10.1007/s00592-022-01951-7.
  • Forrester JV, Kuffova L, Delibegovic M. The role of inflammation in diabetic retinopathy. Front Immunol. 2020;11:583687. doi:10.3389/fimmu.2020.583687.
  • Tuleta I, Frangogiannis NG. Diabetic fibrosis. Biochim Biophys Acta Mol Basis Dis. 2021;1867(4):166044. doi:10.1016/j.bbadis.2020.166044.
  • Bayan N, Yazdanpanah N, Rezaei N. Role of toll-like receptor 4 in diabetic retinopathy. Pharmacol Res. 2022;175:105960. doi:10.1016/j.phrs.2021.105960.
  • Chang KC, Shieh B, Petrash JM. Role of aldose reductase in diabetes-induced retinal microglia activation. Chem Biol Interact. 2019;302:46–52. doi:10.1016/j.cbi.2019.01.020.
  • Joussen AM, Poulaki V, Le ML, Koizumi K, Esser C, Janicki H, Schraermeyer U, Kociok N, Fauser S, Kirchhof B, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. Faseb J. 2004;18(12):1450–1452. doi:10.1096/fj.03-1476fje.
  • Huang J, Zhou Q. CD8 + T cell-related gene biomarkers in macular edema of diabetic retinopathy. Front Endocrinol (Lausanne)). 2022;13:907396. doi:10.3389/fendo.2022.907396.
  • Rajesh A, Droho S, Lavine JA. Macrophages in close proximity to the vitreoretinal interface are potential biomarkers of inflammation during retinal vascular disease. J Neuroinflammation. 2022;19(1):203. doi:10.1186/s12974-022-02562-3.
  • Dechantsreiter S, Ambrose AR, Worboys JD, Lim JME, Liu S, Shah R, Montero MA, Quinn AM, Hussell T, Tannahill GM, et al. Heterogeneity in extracellular vesicle secretion by single human macrophages revealed by super-resolution microscopy. J Extracell Vesicles. 2022;11(4):e12215. doi:10.1002/jev2.12215.
  • Zhang Y, Miao L, Peng Q, Fan X, Song W, Yang B, Zhang P, Liu G, Liu J. Parthenolide modulates cerebral ischemia-induced microglial polarization and alleviates neuroinflammatory injury via the RhoA/ROCK pathway. Phytomedicine. 2022;105:154373. doi:10.1016/j.phymed.2022.154373.
  • Feng X, Gao X, Wang S, Huang M, Sun Z, Dong H, Yu H, Wang G. PPAR-α agonist fenofibrate prevented diabetic nephropathy by inhibiting m1 macrophages via improving endothelial cell function in db/db mice. Front Med. 2021;8:652558. doi:10.3389/fmed.2021.652558.
  • Li Y, Chen D, Sun L, Wu Y, Zou Y, Liang C, Bao Y, Yi J, Zhang Y, Hou J, et al. Induced expression of VEGFC, ANGPT, and EFNB2 and their receptors characterizes neovascularization in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 2019;60(13):4084–4096. doi:10.1167/iovs.19-26767.
  • Luo L, Sun X, Tang M, Wu J, Qian T, Chen S, Guan Z, Jiang Y, Fu Y, Zheng Z. Secreted protein acidic and rich in cysteine mediates the development and progression of diabetic retinopathy. Front Endocrinol (Lausanne)). 2022;13:869519. doi:10.3389/fendo.2022.869519.
  • Becker K, Klein H, Simon E, Viollet C, Haslinger C, Leparc G, Schultheis C, Chong V, Kuehn MH, Fernandez-Albert F, et al. In-depth transcriptomic analysis of human retina reveals molecular mechanisms underlying diabetic retinopathy. Sci Rep. 2021;11(1):10494. doi:10.1038/s41598-021-88698-3.
  • Sharma I, Yadav KS, Mugale MN. Redoxisome and diabetic retinopathy: pathophysiology and therapeutic interventions. Pharmacol Res. 2022;182:106292. doi:10.1016/j.phrs.2022.106292.
  • Zhang X, Nie Y, Gong Z, Zhu M, Qiu B, Wang Q. Plasma apolipoproteins predicting the occurrence and severity of diabetic retinopathy in patients with type 2 diabetes mellitus. Front Endocrinol. 2022;13:915575. doi:10.3389/fendo.2022.915575.
  • Wu J, Hu J, Zhang F, Jin Q, Sun X. High glucose promotes IL-17A-induced gene expression through histone acetylation in retinal pigment epithelium cells. Int Immunopharmacol. 2022;110:108893. doi:10.1016/j.intimp.2022.108893.
  • Liao C, Wang Q, An J, Chen J, Li X, Long Q, Xiao L, Guan X, Liu J. CD44 glycosylation as a therapeutic target in oncology. Front Oncol. 2022;12:883831. doi:10.3389/fonc.2022.883831.
  • Zhang SS, Hu JQ, Liu XH, Chen LX, Chen H, Guo XH, Huang QB. Role of moesin phosphorylation in retinal pericyte migration and detachment induced by advanced glycation endproducts. Front Endocrinol. 2020;11:603450. doi:10.3389/fendo.2020.603450.
  • Screaton GR, Bell MV, Bell JI, Jackson DG. The identification of a new alternative exon with highly restricted tissue expression in transcripts encoding the mouse Pgp-1 (CD44) homing receptor. Comparison of all 10 variable exons between mouse, human, and rat. J Biol Chem. 1993;268(17):12235–12238. doi:10.1016/S0021-9258(18)31376-0.
  • Batsché E, Yi J, Mauger O, Kornobis E, Hopkins B, Hanmer-Lloyd C, Muchardt C. CD44 alternative splicing senses intragenic DNA methylation in tumors via direct and indirect mechanisms. Nucleic Acids Res. 2021;49(11):6213–6237. doi:10.1093/nar/gkab437.
  • Huang J, Zhou Q. Gene biomarkers related to Th17 cells in macular edema of diabetic retinopathy: cutting-edge comprehensive bioinformatics analysis and in vivo validation. Front Immunol. 2022;13:858972. doi:10.3389/fimmu.2022.858972.
  • Finlayson M. Modulation of CD44 activity by A6-peptide. Front Immunol. 2015;6:135. doi:10.3389/fimmu.2015.00135.
  • Hu Z, Mao X, Chen M, Wu X, Zhu T, Liu Y, Zhang Z, Fan W, Xie P, Yuan S, et al. Single-cell transcriptomics reveals novel role of microglia in fibrovascular membrane of proliferative diabetic retinopathy. Diabetes. 2022;71(4):762–773. doi:10.2337/db21-0551.
  • Bolandi N, Derakhshani A, Hemmat N, Baghbanzadeh A, Asadzadeh Z, Afrashteh Nour M, Brunetti O, Bernardini R, Silvestris N, Baradaran B. The positive and negative immunoregulatory role of b7 family: promising novel targets in gastric cancer treatment. IJMS. 2021;22(19):10719. doi:10.3390/ijms221910719.
  • Zhao Y, Zheng Q, Jin L. The role of B7 family molecules in maternal-fetal immunity. Front Immunol. 2020;11:458. doi:10.3389/fimmu.2020.00458.
  • Gong L, Wang Y, Zhou L, Bai X, Wu S, Zhu F, Zhu YF. Activation of toll-like receptor-7 exacerbates lupus nephritis by modulating regulatory T cells. Am J Nephrol. 2014;40(4):325–344. doi:10.1159/000368204.
  • Halliday N, Williams C, Kennedy A, Waters E, Pesenacker AM, Soskic B, Hinze C, Hou TZ, Rowshanravan B, Janman D, et al. CD86 Is a selective CD28 ligand supporting FoxP3+ regulatory T cell homeostasis in the presence of high levels of CTLA-4. Front Immunol. 2020;11:600000. doi:10.3389/fimmu.2020.600000.
  • Croft M, Dubey C. Accessory molecule and costimulation requirements for CD4 T Cell Response. Crit Rev Immunol. 2017;37(2-6):261–290. doi:10.1615/CritRevImmunol.v37.i2-6.60.
  • Zhang P, Yang CL, Du T, Liu YD, Ge MR, Li H, Liu RT, Wang CC, Dou YC, Duan RS. Diabetes mellitus exacerbates experimental autoimmune myasthenia gravis via modulating both adaptive and innate immunity. J Neuroinflammation. 2021;18(1):244. doi:10.1186/s12974-021-02298-6.
  • Drehmer D, Mesquita Luiz JP, Hernandez CAS, Alves-Filho JC, Hussell T, Townsend PA, Moncada S. Nitric oxide favours tumour-promoting inflammation through mitochondria-dependent and -independent actions on macrophages. Redox Biol. 2022;54:102350. doi:10.1016/j.redox.2022.102350.
  • Banete A, Barilo J, Whittaker R, Basta S. The activated macrophage - a tough fortress for virus invasion: how viruses strike back. Front Microbiol. 2021;12:803427. doi:10.3389/fmicb.2021.803427.
  • Kadomoto S, Izumi K, Mizokami A. Macrophage polarity and disease control. IJMS. 2021;23(1):144. doi:10.3390/ijms23010144.
  • Wang J, Lu S, Yang F, Guo Y, Chen Z, Yu N, Yao L, Huang J, Fan W, Xu Z, et al. The role of macrophage polarization and associated mechanisms in regulating the anti-inflammatory action of acupuncture: a literature review and perspectives. Chin Med. 2021;16(1):56. doi:10.1186/s13020-021-00466-7.
  • Zhu Y, Zhang L, Lu Q, Gao Y, Cai Y, Sui A, Su T, Shen X, Xie B. Identification of different macrophage subpopulations with distinct activities in a mouse model of oxygen-induced retinopathy. Int J Mol Med. 2017;40(2):281–292. doi:10.3892/ijmm.2017.3022.
  • Gao S, Li C, Zhu Y, Wang Y, Sui A, Zhong Y, Xie B, Shen X. PEDF mediates pathological neovascularization by regulating macrophage recruitment and polarization in the mouse model of oxygen-induced retinopathy. Sci Rep. 2017;7:42846. doi:10.1038/srep42846.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.