136
Views
1
CrossRef citations to date
0
Altmetric
Retina

Domain Adaptation-Based Automated Detection of Retinal Diseases from Optical Coherence Tomography Images

, , , &
Pages 836-842 | Received 09 Nov 2022, Accepted 05 May 2023, Published online: 19 May 2023

References

  • Rein DB, Wittenborn JS, Zhang X, Honeycutt AA, Lesesne SB, Saaddine J, Vision Health Cost-Effectiveness Study Group. Forecasting age-related macular degeneration through the year 2050: the potential impact of new treatments. Arch Ophthalmol. 2009;127(4):533–540. doi:10.1001/archophthalmol.2009.58.
  • Ng CH, Cheung N, Wang JJ, Islam AF, Kawasaki R, Meuer SM, Cotch MF, Klein BE, Klein R, Wong TY. Prevalence and risk factors for epiretinal membranes in a multi-ethnic United States population. Ophthalmology. 2011;118(4):694–699. doi:10.1016/j.ophtha.2010.08.009.
  • Pauleikhoff D, Pauleikhoff L, Chew EY. Imaging endpoints for clinical trials in MacTel type 2. Eye. 2022;36(2):284–293. doi:10.1038/s41433-021-01723-7.
  • Swanson EA, Fujimoto JG. The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact [Invited]. Biomed Opt Express. 2017;8(3):1638–1664. doi:10.1364/BOE.8.001638.
  • Savadjiev P, Chong J, Dohan A, Vakalopoulou M, Reinhold C, Paragios N, Gallix B. Demystification of AI-driven medical image interpretation: past, present and future. Eur Radiol. 2019;29(3):1616–1624. doi:10.1007/s00330-018-5674-x.
  • Srinivasan PP, Kim LA, Mettu PS, Cousins SW, Comer GM, Izatt JA, Farsiu S. Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images. Biomed Opt Express. 2014;5(10):3568–3577. doi:10.1364/BOE.5.003568.
  • Liu YY, Chen M, Ishikawa H, Wollstein G, Schuman JS, Rehg JM. Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding. Med Image Anal. 2011;15(5):748–759. doi:10.1016/j.media.2011.06.005.
  • Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, McKeown A, Yang G, Wu X, Yan F, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell. 2018;172(5):1122–1131 e9. doi:10.1016/j.cell.2018.02.010.
  • Schlegl T, Waldstein SM, Bogunovic H, Endstraßer F, Sadeghipour A, Philip A-M, Podkowinski D, Gerendas BS, Langs G, Schmidt-Erfurth U. Fully automated detection and quantification of macular fluid in OCT using deep learning. Ophthalmology. 2018;125(4):549–558. doi:10.1016/j.ophtha.2017.10.031.
  • Terry L, Cassels N, Lu K, Acton JH, Margrain TH, North RV, Fergusson J, White N, Wood A. Automated retinal layer segmentation using spectral domain optical coherence tomography: evaluation of inter-session repeatability and agreement between devices. PLoS One. 2016;11(9):e0162001. doi:10.1371/journal.pone.0162001.
  • De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, Askham H, Glorot X, O'Donoghue B, Visentin D, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018;24(9):1342–1350. doi:10.1038/s41591-018-0107-6.
  • Ren J, Hacihaliloglu I, Singer EA, Foran DJ, Qi X. Adversarial domain adaptation for classification of prostate histopathology whole-slide images. Med Image Comput Assist Interv. 2018;11071:201–209.
  • Romo-Bucheli D, Seebock P, Orlando JI, Gerendas BS, Waldstein SM, Schmidt-Erfurth U, Bogunovic H. Reducing image variability across OCT devices with unsupervised unpaired learning for improved segmentation of retina. Biomed Opt Express. 2020;11(1):346–363. doi:10.1364/BOE.379978.
  • Wang J, Li W, Chen Y, Fang W, Kong W, He Y, Shi G. Weakly supervised anomaly segmentation in retinal OCT images using an adversarial learning approach. Biomed Opt Express. 2021;12(8):4713–4729. doi:10.1364/BOE.426803.
  • Wang L, Wang G, Zhang M, Fan D, Liu X, Guo Y, Wang R, Lv B, Lv C, Wei J, et al. An intelligent optical coherence tomography-based system for pathological retinal cases identification and urgent referrals. Transl Vis Sci Technol. 2020;9(2):46. doi:10.1167/tvst.9.2.46.
  • Removal of Speckle Noise from OCT Images for ARMD Diagnosis: an Evaluation of Various Filters. 2020 international conference on Power, Instrumentation, Control and Computing (PICC); 2020. Thrissur, India: IEEE. doi:10.1109/PICC51425.2020.9362350.
  • Coscas F, Coscas G, Souied E, Tick S, Soubrane G. Optical coherence tomography in age-related macular degeneration (p. 98). Gabriel COSCAS, Springer Science & Business Media, 2009.
  • Wilkins JR, Puliafito CA, Hee MR, Duker JS, Reichel E, Coker JG, Schuman JS, Swanson EA, Fujimoto JG. Characterization of epiretinal membranes using optical coherence tomography. Ophthalmology. 1996;103(12):2142–2151. doi:10.1016/s0161-6420(96)30377-1.
  • Rachitskaya AV, Yuan A, Singh RP, Sears JE, Schachat AP. Optical coherence tomography of outer retinal holes in senile retinoschisis and schisis-detachment. Br J Ophthalmol. 2017;101(4):445–448. doi:10.1136/bjophthalmol-2016-308551.
  • Müller PL, Wolf S, Dolz-Marco R, Tafreshi A, Schmitz-Valckenberg S, Holz FG. Ophthalmic diagnostic imaging: retina. In: Josef F. Bille (Ed). High resolution imaging in microscopy and ophthalmology: new frontiers in biomedical optics (pp. 87–106). Springer Science & Business Media, 2019.
  • Pircher M, Gotzinger E, Findl O, Michels S, Geitzenauer W, Leydolt C, Schmidt-Erfurth U, Hitzenberger CK. Human macula investigated in vivo with polarization-sensitive optical coherence tomography. Invest Ophthalmol Vis Sci. 2006;47(12):5487–5494. doi:10.1167/iovs.05-1589.
  • Lu W, Tong Y, Yu Y, Xing Y, Chen C, Shen Y. Deep learning-based automated classification of multi-categorical abnormalities from optical coherence tomography images. Transl Vis Sci Technol. 2018;7(6):41. doi:10.1167/tvst.7.6.41.
  • Naik A, Pavana BS, Sooda K. (2022). Retinal disease classification from retinal-OCT images using deep learning methods. In: Skala V, Singh TP, Choudhury T, Tomar R, Abul Bashar M, editors. Machine intelligence and data science applications. lecture notes on data engineering and communications technologies. Springer Science & Business Media, 2022. doi: 10.1007/978-981-19-2347-0_8.
  • Atwany MZ, Sahyoun AH, Yaqub M. Deep learning techniques for diabetic retinopathy classification: a survey. IEEE Access. 2022;10:28642–28655. doi:10.1109/ACCESS.2022.3157632.
  • Sunija AP, Kar S, Gayathri S, Gopi VP, Palanisamy P. OctNET: a lightweight CNN for retinal disease classification from optical coherence tomography images. Comput Methods Progr Biomed. 2021;200:105877. doi:10.1016/j.cmpb.2020.105877.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.