161
Views
0
CrossRef citations to date
0
Altmetric
Glaucoma

A Study on the Candidate Gene Association and Interaction with Measures of UV Exposure in Pseudoexfoliation Patients from India

, , , , , , , , , & show all
Pages 1144-1152 | Received 25 Feb 2023, Accepted 05 Aug 2023, Published online: 14 Aug 2023

References

  • Thorleifsson G, Magnusson KP, Sulem P, Walters GB, Gudbjartsson DF, Stefansson H, Jonsson T, Jonasdottir A, Jonasdottir A, Stefansdottir G, et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science. 2007;317(5843):1397–1400. doi: 10.1126/science.1146554.
  • Pasquale LR, Jiwani AZ, Zehavi-Dorin T, Majd A, Rhee DJ, Chen T, Turalba A, Shen L, Brauner S, Grosskreutz C, et al. Solar exposure and residential geographic history in relation to exfoliation syndrome in the United States and Israel. JAMA Ophthalmol. 2014;132(12):1439–1445. doi: 10.1001/jamaophthalmol.2014.3326.
  • Tanito M, Kaidzu S, Takai Y, Ohira A. Status of systemic oxidative stresses in patients with primary open-angle glaucoma and pseudoexfoliation syndrome. PLOS One. 2012;7(11):e49680. doi: 10.1371/journal.pone.0049680.
  • Roedl JB, Bleich S, Reulbach U, Rejdak R, Naumann GOH, Kruse FE, Schlötzer-Schrehardt U, Kornhuber J, Jünemann AGM. Vitamin deficiency and hyperhomocysteinemia in pseudoexfoliation glaucoma. J Neural Transm. 2007;114(5):571–575. doi: 10.1007/s00702-006-0598-z.
  • Kang JH, Loomis SJ, Wiggs JL, Willett WC, Pasquale LR. A prospective study of folate, Vitamin B 6, and Vitamin B 12 intake in relation to exfoliation glaucoma or suspected exfoliation glaucoma. JAMA Ophthalmol. 2014;132(5):549–559. doi: 10.1001/jamaophthalmol.2014.100.
  • Zenkel M, Hoja U, Gießl A, Berner D, Hohberger B, Weller JM, König L, Hübner L, Ostermann TA, Gusek-Schneider GC, et al. Dysregulated retinoic acid signaling in the pathogenesis of pseudoexfoliation syndrome. Int. J. Mol. Sci. 2022;23(11):5977. doi: 10.3390/ijms23115977.
  • Bernstein AM, Ritch R, Wolosin JM. Exfoliation syndrome: a disease of autophagy and LOXL1 proteopathy. J Glaucoma. 2018;27(Suppl 1):s44–S53. doi: 10.1097/IJG.0000000000000919.
  • Schlötzer-Schrehardt U, Zenkel M, Küchle M, Sakai LY, Naumann GOH. Role of Transforming growth factor-β1 and its latent form binding protein in pseudoexfoliation syndrome. Exp Eye Res. 2001;73(6):765–780. doi: 10.1006/exer.2001.1084.
  • Roodnat AW, Callaghan B, Doyle C, Henry M, Goljanek-Whysall K, Simpson DA, Sheridan C, Atkinson SD, Willoughby CE. Genome-wide RNA sequencing of human trabecular meshwork cells treated with TGF-β1: relevance to pseudoexfoliation glaucoma. Biomolecules. 2022;12(11):1693. doi: 10.3390/biom12111693.
  • Csiszar K. Lysyl oxidases: a novel multifunctional amine oxidase family. Prog Nucleic Acid Res Mol Biol. 2001; 70:1–32. doi: 10.1016/S0079-6603(01)70012-8.
  • Kagan HM, Li W. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem. 2003;88(4):660–672. doi: 10.1002/jcb.10413.
  • Lucero HA, Kagan HM. Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol Life Sci. 2006;63(19-20):2304–2316. doi: 10.1007/s00018-006-6149-9.
  • Schlötzer-Schrehardt U, Zenkel M. The role of lysyl oxidase-like 1 (LOXL1) in exfoliation syndrome and glaucoma. Exp Eye Res. 2019;189:107818. doi: 10.1016/j.exer.2019.107818.
  • Wang L, Yu Y, Fu S, Zhao W, Liu P. LOXL1 gene polymorphism with exfoliation syndrome/exfoliation glaucoma. J Glaucoma. 2016;25(1):62–94. doi: 10.1097/IJG.0000000000000128.
  • Founti P, Haidich A-B, Chatzikyriakidou A, Salonikiou A, Anastasopoulos E, Pappas T, Lambropoulos A, Viswanathan AC, Topouzis F. Ethnicity-based differences in the association of LOXL1 polymorphisms with pseudoexfoliation/pseudoexfoliative glaucoma: a meta-analysis. Ann Hum Genet. 2015;79(6):431–450. doi: 10.1111/ahg.12128.
  • Aung T, Ozaki M, Lee MC, Schlötzer-Schrehardt U, Thorleifsson G, Mizoguchi T, Igo RP, Haripriya A, Williams SE, Astakhov YS, et al. Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci. Nat Genet. 2017;49(7):993–1004. doi: 10.1038/ng.3875.
  • Mullany S, Marshall H, Zhou T, Thomson D, Schmidt JM, Qassim A, Knight LSW, Hollitt G, Berry EC, Nguyen T, et al. RNA sequencing of lens capsular epithelium implicates novel pathways in pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci. 2022;63(3):26. doi: 10.1167/iovs.63.3.26.
  • Zenkel M, Krysta A, Pasutto F, Juenemann A, Kruse FE, Schlötzer-Schrehardt U. Regulation of lysyl oxidase-like 1 (LOXL1) and elastin-related genes by pathogenic factors associated with pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci. 2011;52(11):8488–8495. doi: 10.1167/iovs.11-8361.
  • Stein JD, Pasquale LR, Talwar N, Kim DS, Reed DM, Nan B, Kang JH, Wiggs JL, Richards JE. Geographic and climatic factors associated with exfoliation syndrome. Arch Ophthalmol. 2011;129(8):1053–1060. doi: 10.1001/archophthalmol.2011.191.
  • Greene AG, Eivers SB, McDonnell F, Dervan EWJ, O'Brien CJ, Wallace DM. Differential Lysyl oxidase like 1 expression in pseudoexfoliation glaucoma is orchestrated via DNA methylation. Exp Eye Res. 2020;201:108349. doi: 10.1016/j.exer.2020.108349.
  • Schlötzer-Schrehardt U, Pasutto F, Sommer P, Hornstra I, Kruse FE, Naumann GOH, Reis A, Zenkel M. Genotype-correlated expression of lysyl oxidase-like 1 in ocular tissues of patients with pseudoexfoliation syndrome/glaucoma and normal patients. Am J Pathol. 2008;173(6):1724–1735. doi: 10.2353/ajpath.2008.080535.
  • Sureshkumar I, Gunalan V, Nareshkumar RN, Sripriya K, Ronnie G, Sharada R, Asokan R. Evaluating the impact of ocular UV exposure for the development for pseudoexfoliation syndrome in a South Indian population. Clin Exp Optom. 2022. Advance online publication. doi: 10.1080/08164622.2022.2134762.
  • Yilmaz SG, Palamar M, Onay H, Ilim O, Aykut A, Ozkinay FF, Yagci A. LOXL1 gene analysis in Turkish patients with exfoliation glaucoma. Int Ophthalmol. 2016;36(5):629–635. doi: 10.1007/s10792-016-0174-y.
  • Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263–265. doi: 10.1093/bioinformatics/bth457.
  • Qin ZS, Niu T, Liu JS. Partition-ligation–expectation-maximization algorithm for haplotype inference with single-nucleotide polymorphisms. Am J Hum Genet. 2002;71(5):1242–1247. doi: 10.1086/344207.
  • Tregouet DA, Garelle V. A new JAVA interface implementation of THESIAS: testing haplotype effects in association studies. Bioinformatics. 2007;23(8):1038–1039. doi: 10.1093/bioinformatics/btm058.
  • Czarnecka KH, Migdalska-Sęk M, Domańska D, Pastuszak-Lewandoska D, Dutkowska A, Kordiak J, Nawrot E, Kiszałkiewicz J, Antczak A, Brzeziańska-Lasota E. FHIT promoter methylation status, low protein and high mRNA levels in patients with non-small cell lung cancer. Int J Oncol. 2016;49(3):1175–1184. doi: 10.3892/ijo.2016.3610.
  • Pastuszak-Lewandoska D, Kordiak J, Migdalska-Sęk M, Czarnecka KH, Antczak A, Górski P, Nawrot E, Kiszałkiewicz JM, Domańska D, Brzeziańska-Lasota E. Quantitative analysis of mRNA expression levels and DNA methylation profiles of three neighboring genes: FUS1, NPRL2/G21 and RASSF1A in non-small cell lung cancer patients. Respir Res. 2015;16(1):76. doi: 10.1186/s12931-015-0230-6.
  • de Winter JCF. Using the student’s ‘t’-test with extremely small sample sizes. Pract. Assess. Res. Evaluation. 2013;18(10):1–12.
  • Debret R, Cenizo V, Aimond G, André V, Devillers M, Rouvet I, Mégarbané A, Damour O, Sommer P. Epigenetic silencing of lysyl oxidase-like-1 through dna hypermethylation in an autosomal recessive cutis laxa case. J Invest Dermatol. 2010;130(11):2594–2601. doi: 10.1038/jid.2010.186.
  • Ramprasad VL, George R, Soumittra N, Sharmila F, Vijaya L, Kumaramanickavel G. Association of non-synonymous single nucleotide polymorphisms in the LOXL1 gene with pseudoexfoliation syndrome in India. Mol Vis. 2008;14:318–322.
  • Gayathri R, Coral K, Sharmila F, Sripriya S, Sripriya K, Manish P, Shantha B, Ronnie G, Vijaya L, Narayanasamy A. Correlation of aqueous humor lysyl oxidase activity with TGF-ß Levels and LOXL1 genotype in pseudoexfoliation. Curr Eye Res. 2016;41(10):1331–1338. doi: 10.3109/02713683.2015.1125505.
  • Pandav SS, Chakma P, Khera A, Chugh N, Gupta PC, Thattaruthody F, Seth NG, Raj S, Kaushik S, Khullar M, et al. Lack of association between lysyl oxidase-like 1 polymorphism in pseudoexfoliation syndrome and pseudoexfoliation glaucoma in North Indian population. Eur J Ophthalmol. 2019;29(4):431–436. doi: 10.1177/1120672118795405.
  • Dubey SK, Hejtmancik JF, Krishnadas SR, Sharmila R, Haripriya A, Sundaresan P. Lysyl oxidase–like 1 gene in the reversal of promoter risk allele in pseudoexfoliation syndrome. JAMA Ophthalmol. 2014;132(8):949. doi: 10.1001/jamaophthalmol.2014.845.
  • Wiggs JL, Pasquale LR. Expression and regulation of LOXL1 and elastin-related genes in eyes with exfoliation syndrome. J. Glaucoma. 2014;23:S62–S63. doi: 10.1097/IJG.0000000000000124.
  • Eliseeva N, Ponomarenko I, Reshetnikov E, Dvornyk V, Churnosov M. LOXL1 gene polymorphism candidates for exfoliation glaucoma are also associated with a risk for primary open-angle glaucoma in a Caucasian population from central Russia. Mol. Vis. 2021;27:262–269.
  • Zanon-Moreno V, Zanon-Moreno L, Ortega-Azorin C, Asensio-Marquez EM, Garcia-Medina JJ, Sanz P, Pinazo-Duran MD, Ordovás JM, Corella D. Genetic polymorphism related to exfoliative glaucoma is also associated with primary open-angle glaucoma risk. Clin Experiment Ophthalmol. 2015;43(1):26–30. doi: 10.1111/ceo.12367.
  • Pasutto F, Zenkel M, Hoja U, Berner D, Uebe S, Ferrazzi F, Schödel J, Liravi P, Ozaki M, Paoli D, et al. Pseudoexfoliation syndrome-associated genetic variants affect transcription factor binding and alternative splicing of LOXL1. Nat Commun. 2017;8(1):15466. doi: 10.1038/ncomms15466.
  • Starikova D, Ponomarenko I, Reshetnikov E, Dvornyk V, Churnosov M. Novel data about association of the functionally significant polymorphisms of the MMP9 gene with exfoliation glaucoma in the caucasian population of Central Russia. Ophthalmic Res. 2021;64(3):458–464. doi: 10.1159/000512507.
  • Eliseeva N, Ponomarenko I, Reshetnikov E, Dvornyk V, Churnosov M. The haplotype of the CDKN2B-AS1 gene is associated with primary open-angle glaucoma and pseudoexfoliation glaucoma in the Caucasian population of Central Russia. Ophthalmic Genet. 2021;42(6):698–705. doi: 10.1080/13816810.2021.1955275.
  • Ponomarenko I, Reshetnikov E, Dvornyk V, Churnosov M. Functionally significant polymorphisms of the MMP9 gene are associated with primary open-angle glaucoma in the population of Russia. Eur J Ophthalmol. 2022;32(6):3208–3219. doi: 10.1177/11206721221083722.
  • Eliseeva NV. A replicative study of the associations of polymorphic loci of the LOXL1 and CDKN2B-AS1 genes with the development of primary open-angle glaucoma in men of the Central Black Earth Region of the Russian Federation. Res. Results Biomed. 2020;6(2):198–208. doi: 10.18413/2658-6533-2020-6-2-0-4.
  • Khadzhieva MB, Kamoeva SV, Ivanova AV, Salnikova LE. Genetic factors of comorbidity of pelvic organ prolapse, stress urinary incontinence, and chronic venous insufficiency of the lower limbs in women. Russ J Genet. 2018;54(12):1479–1486. doi: 10.1134/S1022795418120049.
  • Abu-Amero KK, Osman EA, Dewedar AS, Schmidt S, Allingham RR, Al-Obeidan SA. Analysis of LOXL1 polymorphisms in a Saudi Arabian population with pseudoexfoliation glaucoma. Mol Vis. 2010;16:2805–2810.
  • Summanen P, Tönjum AM. Exfoliation syndrome among Saudis. Acta Ophthalmol. 2009;66(S184):107–111. doi: 10.1111/j.1755-3768.1988.tb02639.x.
  • Pasquale LR, Kang JH, Fan B, Levkovitch-Verbin H, Wiggs JL. LOXL1 Polymorphisms: genetic biomarkers that presage environmental determinants of exfoliation syndrome. J. Glaucoma. 2018;27(Supplement 1):S20–S23. doi: 10.1097/IJG.0000000000000915.
  • Lania L, Majello B, de Luca P. Transcriptional regulation by the Sp family proteins. Int. J. Biochem. Cell Biol. 1997;29(12):1313–1323. doi: 10.1016/S1357-2725(97)00094-0.
  • Li L, He S, Sun J-M, Davie JR. Gene regulation by Sp1 and Sp3. Biochem Cell Biol. 2004;82(4):460–471. doi: 10.1139/o04-045.
  • Ye H, Jiang Y, Jing Q, Li D, Maimaiti T, Kasimu D, Lu Y. LOXL1 Hypermethylation in pseudoexfoliation syndrome in the Uighur population. Invest Ophthalmol Vis Sci. 2015;56(10):5838. doi: 10.1167/iovs.15-16618.
  • Moulin L, Cenizo V, Antu AN, André V, Pain S, Sommer P, Debret R. Methylation of LOXL1 promoter by DNMT3A in aged human skin fibroblasts. Rejuvenation Res. 2017;20(2):103–110. doi: 10.1089/rej.2016.1832.
  • Wu G, Guo Z, Chang X, Kim MS, Nagpal JK, Liu J, Maki JM, Kivirikko KI, Ethier SP, Trink B, et al. LOXL1 and LOXL4 are epigenetically silenced and can inhibit Ras/Extracellular signal-regulated kinase signaling pathway in human bladder cancer. Cancer Res. 2007;67(9):4123–4129. doi: 10.1158/0008-5472.CAN-07-0012.
  • Hauser MA, Aboobakar IF, Liu Y, Miura S, Whigham BT, Challa P, Wheeler J, Williams A, Santiago-Turla C, Qin X, et al. Genetic variants and cellular stressors associated with exfoliation syndrome modulate promoter activity of a lncRNA within the LOXL1 locus. Hum Mol Genet. 2015;24(22):6552–6563. doi: 10.1093/hmg/ddv347.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.