515
Views
0
CrossRef citations to date
0
Altmetric
Retina and Choroid

Analysis of Cytokine Levels Based on Optical Coherence Tomography Findings in Acute and Chronic Central Serous Chorioretinopathy

, , , , , , & ORCID Icon show all
Pages 1153-1159 | Received 28 Mar 2023, Accepted 16 Aug 2023, Published online: 27 Aug 2023

References

  • Kaye R, Chandra S, Sheth J, Boon CJF, Sivaprasad S, Lotery A. Central serous chorioretinopathy: an update on risk factors, pathophysiology and imaging modalities. Prog Retin Eye Res. 2020; 79:100865. doi: 10.1016/j.preteyeres.2020.100865.
  • van Rijssen TJ, van Dijk EHC, Yzer S, Ohno-Matsui K, Keunen JEE, Schlingemann RO, Sivaprasad S, Querques G, Downes SM, Fauser S, et al. Central serous chorioretinopathy: towards an evidence-based treatment guideline. Prog Retin Eye Res. 2019; 73:100770. doi: 10.1016/j.preteyeres.2019.07.003.
  • Daruich A, Matet A, Dirani A, Bousquet E, Zhao M, Farman N, Jaisser F, Behar-Cohen F. Central serous chorioretinopathy: recent findings and new physiopathology hypothesis. Prog Retin Eye Res. 2015; 48:82–118. doi: 10.1016/j.preteyeres.2015.05.003.
  • Iglicki M, Busch C, Loewenstein A, Fung AT, Invernizzi A, Mariussi M, Arias R, Gabrielle PH, Cebeci Z, Okada M, et al. Underdiagnosed optic disk pit maculopathy: spectral domain optical coherence tomography features for accurate diagnosis. Retina. 2019;39(11):2161–2166. doi: 10.1097/IAE.0000000000002270.
  • Nkrumah G N, Paez-Escamilla M, Singh SR, Rasheed MA, Maltsev D, Guduru A, Chhablani J. Biomarkers for central serous chorioretinopathy. Ther Adv Ophthalmol. 2020; 12:2515841420950846. doi: 10.1177/2515841420950846.
  • Yalcinbayir O, Gelisken O, Akova-Budak B, Ozkaya G, Gorkem Cevik S, Yucel AA. Correlation of spectral domain optical coherence tomography findings and visual acuity in central serous chorioretinopathy. Retina. 2014;34(4):705–712. doi: 10.1097/IAE.0000000000000001.
  • Lee H, Lee J, Chung H, Kim HC. Baseline spectral domain optical coherence tomographic hyperreflective foci as a predictor of visual outcome and recurrence for central serous chorioretinopathy. Retina. 2016;36(7):1372–1380. doi: 10.1097/IAE.0000000000000929.
  • Terao N, Koizumi H, Kojima K, Yamagishi T, Nagata K, Kitazawa K, Yamamoto Y, Yoshii K, Hiraga A, Toda M, et al. Association of upregulated angiogenic cytokines with choroidal abnormalities in chronic central serous chorioretinopathy. Invest Ophthalmol Vis Sci. 2018;59(15):5924–5931. doi: 10.1167/iovs.18-25517.
  • Jung SH, Kim KA, Sohn SW, Yang SJ. Cytokine levels of the aqueous humour in central serous chorioretinopathy. Clin Exp Optom. 2014;97(3):264–269. doi: 10.1111/cxo.12125.
  • Lim JW, Kim MU, Shin MC. Aqueous humor and plasma levels of vascular endothelial growth factor and interleukin-8 in patients with central serous chorioretinopathy. Retina. 2010;30(9):1465–1471. doi: 10.1097/IAE.0b013e3181d8e7fe.
  • Shin MC, Lim JW. Concentration of cytokines in the aqueous humor of patients with central serous chorioretinopathy. Retina. 2011;31(9):1937–1943. doi: 10.1097/IAE.0b013e31820a6a17.
  • Lee H, Jang H, Choi YA, Kim HC, Chung H. Association between soluble CD14 in the aqueous humor and hyperreflective foci on optical coherence tomography in patients with diabetic macular edema. Invest Ophthalmol Vis Sci. 2018;59(2):715–721. doi: 10.1167/iovs.17-23042.
  • Li M, Li J, Chen K, Wang J, Sheng M, Li B. Association between inflammatory factors in the aqueous humor and hyperreflective foci in patients with intractable macular edema treated with antivascular endothelial growth factor. Dis Markers. 2021; 2021:5552824. doi: 10.1155/2021/5552824.
  • Fragiotta S, Abdolrahimzadeh S, Dolz-Marco R, Sakurada Y, Gal-Or O, Scuderi G. Significance of hyperreflective foci as an optical coherence tomography biomarker in retinal diseases: characterization and clinical implications. J Ophthalmol. 2021; 2021:6096017. doi: 10.1155/2021/6096017.
  • Kitazawa K, Sotozono C, Koizumi N, Nagata K, Inatomi T, Sasaki H, Kinoshita S. Safety of anterior chamber paracentesis using a 30-gauge needle integrated with a specially designed disposable pipette. Br J Ophthalmol. 2017;101(5):548–550. doi: 10.1136/bjophthalmol-2016-309650.
  • Shinojima A, Kawamura A, Mori R, Fujita K, Yuzawa M. Findings of optical coherence tomographic angiography at the choriocapillaris level in central serous chorioretinopathy. Ophthalmologica. 2016;236(2):108–113. doi: 10.1159/000448436.
  • Jeong S, Kang W, Noh D, van Hemert J, Sagong M. Choroidal vascular alterations evaluated by ultra-widefield indocyanine green angiography in central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2022;260(6):1887–1898. doi: 10.1007/s00417-021-05461-0.
  • Schellevis RL, van Dijk EHC, Breukink MB, Altay L, Bakker B, Koeleman BPC, Kiemeney LA, Swinkels DW, Keunen JEE, Fauser S, et al. Role of the complement system in chronic central serous chorioretinopathy: a genome-wide association study. JAMA Ophthalmol. 2018;136(10):1128–1136. doi: 10.1001/jamaophthalmol.2018.3190.
  • Nourinia R, Ahmadieh H, Nekoei E, Malekifar P, Tofighi Z. Changes in central choroidal thickness after treatment of diabetic macular edema with intravitreal bevacizumab correlation with central macular thickness and best-corrected visual acuity. Retina. 2018;38(5):970–975. doi: 10.1097/IAE.0000000000001645.
  • Mao J, Zhang C, Zhang S, Liu C, Chen N, Tao J, She X, Zheng Z, Lv Z, Shen L. Predictors of anti-VEGF efficacy in chronic central serous chorioretinopathy based on intraocular cytokine levels and pigment epithelium detachment subtypes. Acta Ophthalmol. 2022;100(7):e1385–e1394.
  • Song IS, Shin YU, Lee BR. Time-periodic characteristics in the morphology of idiopathic central serous chorioretinopathy evaluated by volume scan using spectral-domain optical coherence tomography. Am J Ophthalmol. 2012;154(2):366–375.e4. doi: 10.1016/j.ajo.2012.02.031.
  • Iglicki M, Busch C, Zur D, Okada M, Mariussi M, Chhablani JK, Cebeci Z, Fraser-Bell S, Chaikitmongkol V, Couturier A, et al. Dexamethasone implant for diabetic macular edema in naive compared with refractory eyes: the international retina group real-life 24-month multicenter study. The IRGREL-DEX study. Retina. 2019;39(1):44–51. doi: 10.1097/IAE.0000000000002196.
  • Ding X, Hu Y, Yu H, Li Q. Changes of optical coherence tomography biomarkers in macular edema secondary to retinal vein occlusion after anti-VEGF and anti-inflammatory therapies. Drug Des Devel Ther. 2022; 16:717–725. doi: 10.2147/DDDT.S351683.
  • Iglicki M, González DP, Loewenstein A, Zur D. Next-generation anti-VEGF agents for diabetic macular oedema. Eye. 2022;36(2):273–277. doi: 10.1038/s41433-021-01722-8.
  • Joo JH, Kim H, Shin JH, Moon SW. Aqueous humor cytokine levels through microarray analysis and a sub-analysis based on optical coherence tomography in wet age-related macular degeneration patients. BMC Ophthalmol. 2021;21(1):399. doi: 10.1186/s12886-021-02152-6.
  • Hodge DL, Reynolds D, Cerbán FM, Correa SG, Baez NS, Young HA, Rodriguez-Galan MC. MCP-1/CCR2 interactions direct migration of peripheral B and T lymphocytes to the thymus during acute infectious/inflammatory processes. Eur J Immunol. 2012;42(10):2644–2654. doi: 10.1002/eji.201242408.