292
Views
0
CrossRef citations to date
0
Altmetric
Review

An Overview of Current Glaucomatous Trabecular Meshwork Models

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1089-1099 | Received 04 Apr 2023, Accepted 25 Aug 2023, Published online: 04 Sep 2023

References

  • Tham Y-C, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–2090. doi:10.1016/j.ophtha.2014.05.013.
  • Buffault J, Labbé A, Hamard P, Brignole-Baudouin F, Baudouin C. The trabecular meshwork: structure, function and clinical implications. A review of the literature. J Fr Ophtalmol. 2020;43(7):e217–e230. doi:10.1016/j.jfo.2020.05.002.
  • Stamer WD, Clark AF. The many faces of the trabecular meshwork cell. Exp Eye Res. 2017;158:112–123. doi:10.1016/j.exer.2016.07.009.
  • Safa BN, Wong CA, Ha J, Ethier CR. Glaucoma and biomechanics. Curr Opin Ophthalmol. 2022;33(2):80–90. doi:10.1097/ICU.0000000000000829.
  • Johnson M. What controls aqueous humour outflow resistance? Exp Eye Res. 2006;82(4):545–557. doi:10.1016/j.exer.2005.10.011.
  • Ueda J, Wentz-Hunter K, Yue BYJT. Distribution of myocilin and extracellular matrix components in the juxtacanalicular tissue of human eyes. Invest Ophthalmol Vis Sci. 2002;43(4):1068–1076.
  • Vranka JA, Kelley MJ, Acott TS, Keller KE. Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma. Exp Eye Res. 2015;133:112–125. doi:10.1016/j.exer.2014.07.014.
  • Schlunck G, Han H, Wecker T, Kampik D, Meyer-ter-Vehn T, Grehn F. Substrate rigidity modulates cell matrix interactions and protein expression in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2008;49(1):262–269. doi:10.1167/iovs.07-0956.
  • Pouw AE, Greiner MA, Coussa RG, Jiao C, Han IC, Skeie JM, Fingert JH, Mullins RF, Sohn EH. Cell–Matrix Interactions in the Eye: from Cornea to Choroid. Cells. 2021;10(3):687. doi:10.3390/cells10030687.
  • Stamer WD, Roberts BC, Howell DN, Epstein DL. Isolation, culture, and characterization of endothelial cells from Schlemm’s canal. Invest Ophthalmol Vis Sci. 1998;39(10):1804–1812.
  • Camras LJ, Yuan F, Fan S, Samuelson TW, Ahmed IK, Schieber AT, Toris CB. A novel Schlemm’s Canal scaffold increases outflow facility in a human anterior segment perfusion model. Invest Ophthalmol Vis Sci. 2012;53(10):6115–6121. doi:10.1167/iovs.12-9570.
  • Cassidy PS, Kelly RA, Reina-Torres E, Sherwood JM, Humphries MM, Kiang A-S, Farrar GJ, O'Brien C, Campbell M, Stamer WD, et al. siRNA targeting Schlemm’s canal endothelial tight junctions enhances outflow facility and reduces IOP in a steroid-induced OHT rodent model. Mol Ther Methods Clin Dev. 2021;20:86–94. doi:10.1016/j.omtm.2020.10.022.
  • Bill A, Phillips CI. Uveoscleral drainage of aqueous humour in human eyes. Exp Eye Res. 1971;12(3):275–281. doi:10.1016/0014-4835(71)90149-7.
  • Biswas S, Wan KH. Review of rodent hypertensive glaucoma models. Acta Ophthalmol. 2019;97(3):e331–e340. doi:10.1111/aos.13983.
  • A. Bouhenni R, Dunmire J, Sewell A, Edward DP. Animal Models of Glaucoma. J Biomed Biotechnol. 2012;2012:692609–692611. doi:10.1155/2012/692609.
  • Ergorul C, Levin LA. Solving the Lost in Translation Problem: improving the Effectiveness of Translational Research. Curr Opin Pharmacol. 2013;13(1):108–114. doi:10.1016/j.coph.2012.08.005.
  • McDowell CM, Kizhatil K, Elliott MH, Overby DR, van Batenburg-Sherwood J, Millar JC, Kuehn MH, Zode G, Acott TS, Anderson MG, et al. Consensus recommendation for mouse models of ocular hypertension to study aqueous humor outflow and its mechanisms. Invest Ophthalmol Vis Sci. 2022;63(2):12. doi:10.1167/iovs.63.2.12.
  • Pang I-H, Millar JC, Clark AF. Elevation of intraocular pressure in rodents using viral vectors targeting the trabecular meshwork. Exp Eye Res. 2015;141:33–41. doi:10.1016/j.exer.2015.04.003.
  • Senatorov V, Malyukova I, Fariss R, Wawrousek EF, Swaminathan S, Sharan SK, Tomarev S. Expression of mutated mouse myocilin induces open-angle glaucoma in transgenic mice. J Neurosci. 2006;26(46):11903–11914. doi:10.1523/JNEUROSCI.3020-06.2006.
  • Zhou Y, Grinchuk O, Tomarev SI. Transgenic mice expressing the Tyr437His mutant of human myocilin protein develop glaucoma. Invest Ophthalmol Vis Sci. 2008;49(5):1932–1939. doi:10.1167/iovs.07-1339.
  • Flügel-Koch C, Ohlmann A, Piatigorsky J, Tamm ER. Disruption of anterior segment development by TGF-beta1 overexpression in the eyes of transgenic mice. Dev Dyn. 2002;225(2):111–125. doi:10.1002/dvdy.10144.
  • Kroeber M, Ohlmann A, Russell P, Tamm ER. Transgenic studies on the role of optineurin in the mouse eye. Exp Eye Res. 2006;82(6):1075–1085. doi:10.1016/j.exer.2005.11.004.
  • Shepard AR, Millar JC, Pang I-H, Jacobson N, Wang W-H, Clark AF. Adenoviral gene transfer of active human transforming growth factor-{beta}2 elevates intraocular pressure and reduces outflow facility in rodent eyes. Invest Ophthalmol Vis Sci. 2010;51(4):2067–2076. doi:10.1167/iovs.09-4567.
  • McDowell CM, Hernandez H, Mao W, Clark AF. Gremlin Induces Ocular Hypertension in Mice Through Smad3-Dependent Signaling. Invest Ophthalmol Vis Sci. 2015;56(9):5485–5492. doi:10.1167/iovs.15-16993.
  • Dillinger AE, Kuespert S, Seleem AA, Neuendorf J, Schneider M, Fuchshofer R. CCN2/CTGF tip the balance of growth factors towards TGF-β2 in primary open-angle glaucoma. Front Mol Biosci. 2023;10:1045411. doi:10.3389/fmolb.2023.1045411.
  • Mao W, Millar JC, Wang W-H, Silverman SM, Liu Y, Wordinger RJ, Rubin JS, Pang I-H, Clark AF. Existence of the canonical WNT signaling pathway in the human trabecular meshwork. Invest Ophthalmol Vis Sci. 2012;53(11):7043–7051. doi:10.1167/iovs.12-9664.
  • Wang W-H, McNatt LG, Pang I-H, Millar JC, Hellberg PE, Hellberg MH, Steely HT, Rubin JS, Fingert JH, Sheffield VC, et al. Increased expression of the WNT antagonist sFRP-1 in glaucoma elevates intraocular pressure. J Clin Invest. 2008;118(3):1056–1064. doi:10.1172/JCI33871.
  • Giovingo M, Nolan M, McCarty R, Pang I-H, Clark AF, Beverley RM, Schwartz S, Stamer WD, Walker L, Grybauskas A, et al. sCD44 overexpression increases intraocular pressure and aqueous outflow resistance. Mol Vis. 2013;19:2151–2164.
  • McDowell CM, Luan T, Zhang Z, Putliwala T, Wordinger RJ, Millar JC, John SWM, Pang I-H, Clark AF. Mutant Human Myocilin Induces Strain Specific Differences in Ocular Hypertension and Optic Nerve Damage in Mice. Exp Eye Res. 2012;100:65–72. doi:10.1016/j.exer.2012.04.016.
  • Hubrecht RC, Carter E. The 3Rs and humane experimental technique: implementing change. Animals. 2019;9(10):754. doi:10.3390/ani9100754.
  • Bonneau N, Baudouin C, Réaux-Le Goazigo A, Brignole-Baudouin F. An overview of current alternative models in the context of ocular surface toxicity. J Appl Toxicol. 2022;42(5):718–737. doi:10.1002/jat.4246.
  • Keller KE, Bhattacharya SK, Borrás T, Brunner TM, Chansangpetch S, Clark AF, Dismuke WM, Du Y, Elliott MH, Ethier CR, et al. Consensus recommendations for trabecular meshwork cell isolation, characterization and culture. Exp Eye Res. 2018;171:164–173. doi:10.1016/j.exer.2018.03.001.
  • Vernazza S, Tirendi S, Scarfì S, Passalacqua M, Oddone F, Traverso CE, Rizzato I, Bassi AM, Saccà SC. 2D- and 3D-cultures of human trabecular meshwork cells: a preliminary assessment of an in vitro model for glaucoma study. PLoS One. 2019;14(9):e0221942. doi:10.1371/journal.pone.0221942.
  • Wang K, Read AT, Sulchek T, Ethier CR. Trabecular meshwork stiffness in glaucoma. Exp Eye Res. 2017;158:3–12. doi:10.1016/j.exer.2016.07.011.
  • Kasetti RB, Patel PD, Maddineni P, Zode GS. Ex-vivo cultured human corneoscleral segment model to study the effects of glaucoma factors on trabecular meshwork. PLoS One. 2020;15(6):e0232111. doi:10.1371/journal.pone.0232111.
  • Norte-Muñoz M, Botelho MF, Schoeberlein A, Chaves J, Neto Murta J, Ponsaerts P, Agudo-Barriuso M, Costa E. Insights and future directions for the application of perinatal derivatives in eye diseases: a critical review of preclinical and clinical studies. Front Bioeng Biotechnol. 2022;10:969927. doi:10.3389/fbioe.2022.969927.
  • Hongisto V, Jernström S, Fey V, Mpindi J-P, Kleivi Sahlberg K, Kallioniemi O, Perälä M. High-throughput 3D screening reveals differences in drug sensitivities between culture models of JIMT1 breast cancer cells. PLoS One. 2013;8(10):e77232. doi:10.1371/journal.pone.0077232.
  • Roodnat AW, Callaghan B, Doyle C, Henry M, Goljanek-Whysall K, Simpson DA, Sheridan C, Atkinson SD, Willoughby CE. Genome-wide RNA sequencing of human trabecular meshwork cells treated with TGF-β1: relevance to pseudoexfoliation glaucoma. Biomolecules. 2022;12(11):1693. doi:10.3390/biom12111693.
  • Waduthanthri KD, Montemagno C, Çetinel S. Establishment of human trabecular meshwork cell cultures using nontransplantable corneoscleral rims. Turk J Biol. 2019;43:89–98. doi:10.3906/biy-1810-69.
  • Stamer DW, Roberts BC, Epstein DL, Allingham RR. Isolation of primary open-angle glaucomatous trabecular meshwork cells from whole eye tissue. Curr Eye Res. 2000;20(5):347–350. doi:10.1076/0271-3683(200005)2051-1FT347.
  • Watanabe M, Ida Y, Ohguro H, Ota C, Hikage F. Establishment of appropriate glaucoma models using dexamethasone or TGFβ2 treated three-dimension (3D) cultured human trabecular meshwork (HTM) cells. Sci Rep. 2021;11(1):19369. doi:10.1038/s41598-021-98766-3.
  • Ota C, Ida Y, Ohguro H, Hikage F. ROCK inhibitors beneficially alter the spatial configuration of TGFβ2-treated 3D organoids from a human trabecular meshwork (HTM). Sci Rep. 2020;10(1):20292. doi:10.1038/s41598-020-77302-9.
  • Abu-Hassan DW, Li X, Ryan EI, Acott TS, Kelley MJ. Induced pluripotent stem cells restore function in a human cell loss model of open-angle glaucoma. Stem Cells. 2015;33(3):751–761. doi:10.1002/stem.1885.
  • Wang W, Miao Y, Sui S, Wang Y, Wu S, Cao Q, Duan H, Qi X, Zhou Q, Pan X, et al. Xeno- and feeder-free differentiation of human iPSCs to trabecular meshwork-like cells by recombinant cytokines. Transl Vis Sci Technol. 2021;10(6):27. doi:10.1167/tvst.10.6.27.
  • Zhu W, Jain A, Gramlich OW, Tucker BA, Sheffield VC, Kuehn MH. Restoration of aqueous humor outflow following transplantation of iPSC-derived trabecular meshwork cells in a transgenic mouse model of glaucoma. Invest Ophthalmol Vis Sci. 2017;58(4):2054–2062. doi:10.1167/iovs.16-20672.
  • Zhu W, Godwin CR, Cheng L, Scheetz TE, Kuehn MH. Transplantation of iPSC-TM stimulates division of trabecular meshwork cells in human eyes. Sci Rep. 2020;10(1):2905. doi:10.1038/s41598-020-59941-0.
  • Yu WY, Sheridan C, Grierson I, Mason S, Kearns V, Lo ACY, Wong D. Progenitors for the corneal endothelium and trabecular meshwork: a potential source for personalized stem cell therapy in corneal endothelial diseases and glaucoma. J Biomed Biotechnol. 2011;2011:412743–13. doi:10.1155/2011/412743.
  • Zhang Y, Cai S, Tseng SCG, Zhu Y-T. Isolation and expansion of multipotent progenitors from human trabecular meshwork. Sci Rep. 2018;8(1):2814. doi:10.1038/s41598-018-21098-2.
  • Tripathi RC, Li J, Chan WF, Tripathi BJ. Aqueous humor in glaucomatous eyes contains an increased level of TGF-beta 2. Exp Eye Res. 1994;59(6):723–727. doi:10.1006/exer.1994.1158.
  • Guo T, Guo L, Fan Y, Fang L, Wei J, Tan Y, Chen Y, Fan X. Aqueous humor levels of TGFβ2 and SFRP1 in different types of glaucoma. BMC Ophthalmol. 2019;19(1):170. doi:10.1186/s12886-019-1183-1.
  • Gottanka J, Chan D, Eichhorn M, Lütjen-Drecoll E, Ethier CR. Effects of TGF-β2 in Perfused Human Eyes. Invest Ophthalmol Vis Sci. 2004;45(1):153–158. doi:10.1167/iovs.03-0796.
  • Torrejon KY, Papke EL, Halman JR, Bergkvist M, Danias J, Sharfstein ST, Xie Y. TGFβ2-induced outflow alterations in a bioengineered trabecular meshwork are offset by a rho-associated kinase inhibitor. Sci Rep. 2016;6(1):38319. doi:10.1038/srep38319.
  • Buffault J, Brignole-Baudouin F, Reboussin É, Kessal K, Labbé A, Mélik Parsadaniantz S, Baudouin C. The Dual Effect of Rho-Kinase Inhibition on Trabecular Meshwork Cells Cytoskeleton and Extracellular Matrix in an In Vitro Model of Glaucoma. J Clin Med. 2022;11(4):1001. doi:10.3390/jcm11041001.
  • Fleenor DL, Shepard AR, Hellberg PE, Jacobson N, Pang I-H, Clark AF. TGFbeta2-induced changes in human trabecular meshwork: implications for intraocular pressure. Invest Ophthalmol Vis Sci. 2006;47(1):226–234. doi:10.1167/iovs.05-1060.
  • Lv Y, Zhang Z, Xing X, Liu A. lncRNA TGFβ2-AS1 promotes ECM production via TGF-β2 in human trabecular meshwork cells. Biochem Biophys Res Commun. 2020;527(4):881–888. doi:10.1016/j.bbrc.2020.05.003.
  • Bermudez JY, Montecchi-Palmer M, Mao W, Clark AF. Cross-linked actin networks (CLANs) in glaucoma. Exp Eye Res. 2017;159:16–22. doi:10.1016/j.exer.2017.02.010.
  • Tirendi S, Saccà SC, Vernazza S, Traverso C, Bassi AM, Izzotti A. A 3D model of human trabecular meshwork for the research study of glaucoma. Front Neurol. 2020;11:591776. doi:10.3389/fneur.2020.591776.
  • Reinehr S, Mueller-Buehl AM, Tsai T, Joachim SC. Specific Biomarkers in the Aqueous Humour of Glaucoma Patients. Klin Monbl Augenheilkd. 2022;239(2):169–176. doi:10.1055/a-1690-7468.
  • Choritz L, Machert M, Thieme H. Correlation of endothelin-1 concentration in aqueous humor with intraocular pressure in primary open angle and pseudoexfoliation glaucoma. Invest Ophthalmol Vis Sci. 2012;53(11):7336–7342. doi:10.1167/iovs.12-10216.
  • Shoshani YZ, Harris A, Shoja MM, Rusia D, Siesky B, Arieli Y, Wirostko B. Endothelin and its suspected role in the pathogenesis and possible treatment of glaucoma. Curr Eye Res. 2012;37(1):1–11. doi:10.3109/02713683.2011.622849.
  • Dismuke WM, Liang J, Overby DR, Stamer WD. Concentration-related effects of nitric oxide and endothelin-1 on human trabecular meshwork cell contractility. Exp Eye Res. 2014;120:28–35. doi:10.1016/j.exer.2013.12.012.
  • Wang J, Rong Y, Liu Y, Zhu M, Chen W, Chen Z, Guo J, Deng C, Manyande A, Wang P, et al. The effect of ET1-CTGF mediated pathway on the accumulation of extracellular matrix in the trabecular meshwork and its contribution to the increase in IOP. Int Ophthalmol. 2023;43(9):3297–3307. doi:10.1007/s10792-023-02733-y.
  • Zhou EH, Paolucci M, Dryja TP, Manley T, Xiang C, Rice DS, Prasanna G, Chen A. A Compact Whole-Eye Perfusion System to Evaluate Pharmacologic Responses of Outflow Facility. Invest Ophthalmol Vis Sci. 2017;58(7):2991–3003. doi:10.1167/iovs.16-20974.
  • Baudouin C, Denoyer A, Desbenoit N, Hamm G, Grise A. In vitro and in vivo experimental studies on trabecular meshwork degeneration induced by benzalkonium chloride (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc. 2012;110:40–63.
  • Bouchemi M, Roubeix C, Kessal K, Riancho L, Raveu A-L, Soualmia H, Baudouin C, Brignole-Baudouin F. Effect of benzalkonium chloride on trabecular meshwork cells in a new in vitro 3D trabecular meshwork model for glaucoma. Toxicol in Vitro. 2017;41:21–29. doi:10.1016/j.tiv.2017.02.006.
  • Torrejon KY, Pu D, Bergkvist M, Danias J, Sharfstein ST, Xie Y. Recreating a human trabecular meshwork outflow system on microfabricated porous structures. Biotechnol Bioeng. 2013;110(12):3205–3218. doi:10.1002/bit.24977.
  • Torrejon KY, Papke EL, Halman JR, Stolwijk J, Dautriche CN, Bergkvist M, Danias J, Sharfstein ST, Xie Y. Bioengineered glaucomatous 3D human trabecular meshwork as an in vitro disease model. Biotechnol Bioeng. 2016;113(6):1357–1368. doi:10.1002/bit.25899.
  • Włodarczyk-Biegun MK, Villiou M, Koch M, Muth C, Wang P, Ott J, del Campo A. Melt electrowriting of graded porous scaffolds to mimic the matrix structure of the human trabecular meshwork. ACS Biomater Sci Eng. 2022;8(9):3899–3911. doi:10.1021/acsbiomaterials.2c00623.
  • Lu R, Soden PA, Lee E. Tissue-engineered models for glaucoma research. Micromachines (Basel). 2020;11(6):612. doi:10.3390/mi11060612.
  • Bikuna-Izagirre M, Aldazabal J, Extramiana L, Moreno-Montañés J, Carnero E, Paredes J. Technological advances in ocular trabecular meshwork in vitro models for glaucoma research. Biotechnol Bioeng. 2022;119(10):2698–2714. doi:10.1002/bit.28182.
  • Tie J, Chen D, Guo J, Liao S, Luo X, Zhang Y, Guo R, Xu C, Huang D, Zhang Y, et al. Transcriptome-wide study of the response of human trabecular meshwork cells to the substrate stiffness increase. J Cell Biochem. 2020;121(5-6):3112–3123. doi:10.1002/jcb.29578.
  • Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev. 2001;101(7):1869–1879. doi:10.1021/cr000108x.
  • Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol. 2005;15(5):378–386. doi:10.1016/j.semcancer.2005.05.004.
  • Benton G, Arnaoutova I, George J, Kleinman HK, Koblinski J. Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev. 2014;79-80:3–18. doi:10.1016/j.addr.2014.06.005.
  • Cheng K, Lai Y, Kisaalita WS. Three-dimensional polymer scaffolds for high throughput cell-based assay systems. Biomaterials. 2008;29(18):2802–2812. doi:10.1016/j.biomaterials.2008.03.015.
  • Hernandez M, Gong H, Ritch R, Shields MB, Krupin T. Extracellular matrix of the trabecular meshwork and optic nerve head. In: the glaucomas: basic sciences. 1996;Mosby. St Louis, Missouri.
  • Keller KE, Aga M, Bradley JM, Kelley MJ, Acott TS. Extracellular matrix turnover and outflow resistance. Exp Eye Res. 2009;88(4):676–682. doi:10.1016/j.exer.2008.11.023.
  • Osmond MJ, Krebs MD, Pantcheva MB. Human trabecular meshwork cell behavior is influenced by collagen scaffold pore architecture and glycosaminoglycan composition. Biotechnol Bioeng. 2020;117(10):3150–3159. doi:10.1002/bit.27477.
  • Adhikari B, Osmond MJ, Pantcheva MB, Krebs MD. Glycosaminoglycans Influence Extracellular Matrix of Human Trabecular Meshwork Cells Cultured on 3D Scaffolds. ACS Biomater Sci Eng. 2022;8(12):5221–5232. doi:10.1021/acsbiomaterials.2c00457.
  • Osmond M, Bernier SM, Pantcheva MB, Krebs MD. Collagen and collagen-chondroitin sulfate scaffolds with uniaxially aligned pores for the biomimetic, three dimensional culture of trabecular meshwork cells. Biotechnol Bioeng. 2017;114(4):915–923. doi:10.1002/bit.26206.
  • Liton PB, Challa P, Stinnett S, Luna C, Epstein DL, Gonzalez P. Cellular senescence in the glaucomatous outflow pathway. Exp Gerontol. 2005;40(8-9):745–748. doi:10.1016/j.exger.2005.06.005.
  • Li H, Bagué T, Kirschner A, Strat AN, Roberts H, Weisenthal RW, Patteson AE, Annabi N, Stamer WD, Ganapathy PS, et al. A tissue-engineered human trabecular meshwork hydrogel for advanced glaucoma disease modeling. Exp Eye Res. 2021;205:108472. doi:10.1016/j.exer.2021.108472.
  • Waduthanthri KD, He Y, Montemagno C, Cetinel S. An injectable peptide hydrogel for reconstruction of the human trabecular meshwork. Acta Biomater. 2019;100:244–254. doi:10.1016/j.actbio.2019.09.032.
  • Watanabe M, Sato T, Tsugeno Y, Umetsu A, Suzuki S, Furuhashi M, Ida Y, Hikage F, Ohguro H. Human Trabecular Meshwork (HTM) cells treated with TGF-β2 or dexamethasone respond to compression stress in different manners. Biomedicines. 2022;10(6):1338. doi:10.3390/biomedicines10061338.
  • Watanabe M, Ida Y, Ohguro H, Ota C, Hikage F. Diverse effects of pan-ROCK and ROCK2 inhibitors on 2 D and 3D cultured human trabecular meshwork (HTM) cells treated with TGFβ2. Sci Rep. 2021;11(1):15286. doi:10.1038/s41598-021-94791-4.
  • Perkins TW, Alvarado JA, Polansky JR, Stilwell L, Maglio M, Juster R. Trabecular meshwork cells grown on filters. Conductivity and cytochalasin effects. Invest Ophthalmol Vis Sci. 1988;29(12):1836–1846.
  • Overby D, Gong H, Qiu G, Freddo TF, Johnson M. The mechanism of increasing outflow facility during washout in the bovine eye. Invest Ophthalmol Vis Sci. 2002;43(11):3455–3464.
  • Mao W, Tovar-Vidales T, Yorio T, Wordinger RJ, Clark AF. Perfusion-cultured bovine anterior segments as an ex vivo model for studying glucocorticoid-induced ocular hypertension and glaucoma. Invest Ophthalmol Vis Sci. 2011;52(11):8068–8075. doi:10.1167/iovs.11-8133.
  • Van Buskirk EM, Grant WM. Lens depression and aqueous outflow in enucleated primate eyes. Am J Ophthalmol. 1973;76(5):632–640. doi:10.1016/0002-9394(73)90555-2.
  • Dang Y, Waxman S, Wang C, Loewen RT, Sun M, Loewen NA. A porcine ex vivo model of pigmentary glaucoma. Sci Rep. 2018;8(1):5468. doi:10.1038/s41598-018-23861-x.
  • Grant WM. Experimental aqueous perfusion in enucleated human eyes. Arch Ophthalmol. 1963;69(6):783–801. doi:10.1001/archopht.1963.00960040789022.
  • Bahler CK, Howell KG, Hann CR, Fautsch MP, Johnson DH. Prostaglandins Increase trabecular meshwork outflow facility in cultured human anterior segments. Am J Ophthalmol. 2008;145(1):114–119. doi:10.1016/j.ajo.2007.09.001.
  • Peng M, Margetts TJ, Sugali CK, Rayana NP, Dai J, Sharma TP, Raghunathan VK, Mao W. An ex vivo model of human corneal rim perfusion organ culture. Exp Eye Res. 2022;214:108891. doi:10.1016/j.exer.2021.108891.
  • Reboussin É, Buffault J, Brignole-Baudouin F, Réaux-Le Goazigo A, Riancho L, Olmiere C, Sahel J-A, Mélik Parsadaniantz S, Baudouin C. Evaluation of neuroprotective and immunomodulatory properties of mesenchymal stem cells in an ex vivo retinal explant model. J Neuroinflammation. 2022;19(1):63. doi:10.1186/s12974-022-02418-w.
  • Saccà SC, Tirendi S, Scarfì S, Passalacqua M, Oddone F, Traverso CE, Vernazza S, Bassi AM. An advanced in vitro model to assess glaucoma onset. ALTEX. 2020;37(2):265–274. doi:10.14573/altex.1909262.
  • Crouch DJ, Sheridan CM, D'Sa RA, Willoughby CE, Bosworth LA. Exploiting biomaterial approaches to manufacture an artificial trabecular meshwork: A progress report. Biomater Biosyst. 2021;1:100011. doi:10.1016/j.bbiosy.2021.100011.
  • Yun H, Zhou Y, Wills A, Du Y. Stem Cells in the Trabecular Meshwork for Regulating Intraocular Pressure. J Ocul Pharmacol Ther. 2016;32(5):253–260. doi:10.1089/jop.2016.0005.
  • Fan X, Bilir EK, Kingston OA, Oldershaw RA, Kearns VR, Willoughby CE, Sheridan CM. Replacement of the trabecular meshwork cells-a way ahead in IOP control? Biomolecules. 2021;11(9):1371. doi:10.3390/biom11091371.
  • Jang H-K, Kim B-S. Modulation of stem cell differentiation with biomaterials. Int J Stem Cells. 2010;3(2):80–84. doi:10.15283/ijsc.2010.3.2.80.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.