97
Views
0
CrossRef citations to date
0
Altmetric
Retina and Choroid

Transcriptomic Analysis of Retinal Gene in Experimental Retinal Detachment Rats and Exploration of S100A9 and TLR4 in Human Vitreous

ORCID Icon, , , , , , , & show all
Pages 1170-1178 | Received 20 Apr 2023, Accepted 28 Aug 2023, Published online: 16 Oct 2023

References

  • Grzybowski A, Romo-Garcia E. Pathogenesis of rhegmatogenous retinal detachment, predisposing anatomy and cell biology. Retina. 2012;32(645):645–646.
  • Mitry D, Charteris DG, Fleck BW, Campbell H, Singh J. The epidemiology of rhegmatogenous retinal detachment: geographical variation and clinical associations. Br J Ophthalmol. 2010;94(6):678–684. doi: 10.1136/bjo.2009.157727.
  • Radeck V, Helbig H, Maerker D, Gamulescu MA, Prahs P, Barth T. Rhegmatogenous retinal detachment repair—does age, sex, and lens status make a difference? Graefes Arch Clin Exp Ophthalmol. 2022;260(10):3197–3204. doi: 10.1007/s00417-022-05674-x.
  • Ferrara M, Mehta A, Qureshi H, Avery P, Yorston D, Laidlaw DA, Williamson TH, Steel DHW, BEAVRS Retinal Detachment Outcomes Group. Phenotype and outcomes of phakic versus pseudophakic primary rhegmatogenous retinal detachments: cataract or cataract surgery related? Am J Ophthalmol. 2021;222:318–327. doi: 10.1016/j.ajo.2020.09.036.
  • Zandi S, Pfister IB, Traine PG, Tappeiner C, Despont A, Rieben R, Skowronska M, Garweg JG. Biomarkers for PVR in rhegmatogenous retinal detachment. PLOS One. 2019;14(4):e214674. doi: 10.1371/journal.pone.0214674.
  • Dai Y, Dai C, Sun T. Inflammatory mediators of proliferative vitreoretinopathy: hypothesis and review. Int Ophthalmol. 2020;40(6):1587–1601. doi: 10.1007/s10792-020-01325-4.
  • Znaor L, Medic A, Binder S, Vucinovic A, Marin LJ, Puljak L. Pars plana vitrectomy versus scleral buckling for repairing simple rhegmatogenous retinal detachments. Cochrane Database Syst Rev. 2019;3:d9562.
  • Takahashi S, Adachi K, Suzuki Y, Maeno A, Nakazawa M. Profiles of inflammatory cytokines in the vitreous fluid from patients with rhegmatogenous retinal detachment and their correlations with clinical features. Biomed Res Int. 2016;2016:4256183–4256189. doi: 10.1155/2016/4256183.
  • Kiang L, Ross BX, Yao J, Shanmugam S, Andrews CA, Hansen S, Besirli CG, Zacks DN, Abcouwer SF. Vitreous cytokine expression and a murine model suggest a key role of microglia in the inflammatory response to retinal detachment. Invest Ophthalmol Vis Sci. 2018;59(8):3767–3778. doi: 10.1167/iovs.18-24489.
  • Matsumoto H, Sugio S, Seghers F, Krizaj D, Akiyama H, Ishizaki Y, Gailly P, Shibasaki K. Retinal detachment-induced Müller glial cell swelling activates TRPV4 ion channels and triggers photoreceptor death at body temperature. J Neurosci. 2018;38(41):8745–8758. doi: 10.1523/JNEUROSCI.0897-18.2018.
  • Josifovska N, Lumi X, Szatmari-Tóth M, Kristóf E, Russell G, Nagymihály R, Anisimova N, Malyugin B, Kolko M, Ivastinovic D, et al. Clinical and molecular markers in retinal detachment—from hyperreflective points to stem cells and inflammation. PLOS One. 2019;14(6):e217548. doi: 10.1371/journal.pone.0217548.
  • Song J, Chen T, Zuo W, Chen W, Lei M, Ai M. Changes of retinal ganglion cell complex after vitrectomy in rhegmatogenous retinal detachment patients and its correlation with inflammatory blood biomarkers. BMC Ophthalmol. 2022;22(1):290. doi: 10.1186/s12886-022-02512-w.
  • Conart JB, Blot G, Augustin S, Millet-Puel G, Roubeix C, Beguier F, Charles-Messance H, Touhami S, Sahel JA, Berrod JP, et al. Insulin inhibits inflammation-induced cone death in retinal detachment. J Neuroinflammation. 2020;17(1):358. doi: 10.1186/s12974-020-02039-1.
  • Öhman T, Gawriyski L, Miettinen S, Varjosalo M, Loukovaara S. Molecular pathogenesis of rhegmatogenous retinal detachment. Sci Rep. 2021;11(1):966. doi: 10.1038/s41598-020-80005-w.
  • Zhang SS, Li H, Huang P, Lou LX, Fu XY, Barnstable CJ. MAPK signaling during Müller glial cell development in retina explant cultures. J Ocul Biol Dis Infor. 2010;3(4):129–133. doi: 10.1007/s12177-011-9064-8.
  • Cebulla CM, Kim B, George V, Heisler-Taylor T, Hamadmad S, Reese AY, Kothari SS, Kusibati R, Wilson H, Abdel-Rahman MH. Oral selumetinib does not negatively impact photoreceptor survival in murine experimental retinal detachment. Invest Ophthalmol Vis Sci. 2019;60(1):349–357. doi: 10.1167/iovs.18-25405.
  • Liu X, Xu B, Gao S. Spleen tyrosine kinase mediates microglial activation in mice with diabetic retinopathy. Transl Vis Sci Technol. 2021;10(4):20. doi: 10.1167/tvst.10.4.20.
  • Yin Y, Wu S, Niu L, Huang S. High-throughput sequencing data reveal an antiangiogenic role of HNF4A-mediated CACNA1A/VEGFA axis in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 2023;64(7):32. doi: 10.1167/iovs.64.7.32.
  • Butowt R, von Bartheld CS. Conventional kinesin-I motors participate in the anterograde axonal transport of neurotrophins in the visual system. J Neurosci Res. 2007;85(12):2546–2556. doi: 10.1002/jnr.21165.
  • Hombrebueno JR, Lynch A, Byrne EM, Obasanmi G, Kissenpfennig A, Chen M, Xu H. Hyaloid vasculature as a major source of STAT3(+) (signal transducer and activator of transcription 3) myeloid cells for pathogenic retinal neovascularization in oxygen-induced retinopathy. Arterioscler Thromb Vasc Biol. 2020;40:e367–e379.
  • Johansson JK, Karema-Jokinen VI, Hakanen S, Jylha A, Uusitalo H, Vihinen-Ranta M, Skottman H, Ihalainen TO, Nymark S. Sodium channels enable fast electrical signaling and regulate phagocytosis in the retinal pigment epithelium. BMC Biol. 2019;17(1):63. doi: 10.1186/s12915-019-0681-1.
  • Wang S, Song R, Wang Z, Jing Z, Wang S, Ma J. S100A8/A9 in inflammation. Front Immunol. 2018;9:1298. doi: 10.3389/fimmu.2018.01298.
  • Hsu K, Champaiboon C, Guenther BD, Sorenson BS, Khammanivong A, Ross KF, Geczy CL, Herzberg MC. Anti-infective protective properties of S100 calgranulins. Antiinflamm Antiallergy Agents Med Chem. 2009;8(4):290–305. doi: 10.2174/187152309789838975.
  • Mondet J, Chevalier S, Mossuz P. Pathogenic roles of S100A8 and S100A9 proteins in acute myeloid and lymphoid leukemia: clinical and therapeutic impacts. Molecules. 2021;26(5):1323. doi: 10.3390/molecules26051323.
  • Vogl T, Stratis A, Wixler V, Völler T, Thurainayagam S, Jorch SK, Zenker S, Dreiling A, Chakraborty D, Fröhling M, et al. Autoinhibitory regulation of S100A8/S100A9 alarmin activity locally restricts sterile inflammation. J Clin Invest. 2018;128(5):1852–1866. doi: 10.1172/JCI89867.
  • Ometto F, Friso L, Astorri D, Botsios C, Raffeiner B, Punzi L, Doria A. Calprotectin in rheumatic diseases. Exp Biol Med. 2017;242(8):859–873. doi: 10.1177/1535370216681551.
  • Pouwels SD, Nawijn MC, Bathoorn E, Riezebos-Brilman A, van Oosterhout AJM, Kerstjens HAM, Heijink IH. Increased serum levels of LL37, HMGB1 and S100A9 during exacerbation in COPD patients. Eur Respir J. 2015;45(5):1482–1485. doi: 10.1183/09031936.00158414.
  • Vaure C, Liu Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol. 2014;5:316. doi: 10.3389/fimmu.2014.00316.
  • Zhang G, Zheng H, Pyykko I, Zou J. The TLR-4/NF-κB signaling pathway activation in cochlear inflammation of rats with noise-induced hearing loss. Hear Res. 2019;379:59–68. doi: 10.1016/j.heares.2019.04.012.
  • Liu L, Jiang Y, Steinle JJ. Toll-like receptor 4 reduces occludin and zonula occludens 1 to increase retinal permeability both in vitro and in vivo. J Vasc Res. 2017;54(6):367–375. doi: 10.1159/000480455.
  • Qi Y, Zhao M, Bai Y, Huang L, Yu W, Bian Z, Zhao M, Li X. Retinal ischemia/reperfusion injury is mediated by Toll-like receptor 4 activation of NLRP3 inflammasomes. Invest Ophthalmol Vis Sci. 2014;55(9):5466–5475. doi: 10.1167/iovs.14-14380.
  • Simard JC, Cesaro A, Chapeton-Montes J, Tardif M, Antoine F, Girard D, Tessier PA. S100A8 and S100A9 induce cytokine expression and regulate the NLRP3 inflammasome via ROS-dependent activation of NF-κB(1.). PLOS One. 2013;8(8):e72138. doi: 10.1371/journal.pone.0072138.
  • Lim RR, Vaidya T, Gadde SG, Yadav NK, Sethu S, Hainsworth DP, Mohan RR, Ghosh A, Chaurasia SS. Correlation between systemic S100A8 and S100A9 levels and severity of diabetic retinopathy in patients with type 2 diabetes mellitus. Diabetes Metab Syndr. 2019;13(2):1581–1589. doi: 10.1016/j.dsx.2019.03.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.