113
Views
0
CrossRef citations to date
0
Altmetric
Cornea

EZH2 Promotes Corneal Endothelial Cell Apoptosis by Mediating H3K27me3 and Inhibiting HO-1 Transcription

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1122-1132 | Received 14 Feb 2023, Accepted 06 Sep 2023, Published online: 06 Oct 2023

References

  • Guerin LP, Le-Bel G, Desjardins P, Couture C, Gillard E, Boisselier E, Bazin R, Germain L, Guerin SL. The human tissue-engineered cornea (hTEC): recent Progress. Int. J. Mol. Sci. 2021;22(3):1291.
  • Vaiciuliene R, Rylskyte N, Baguzyte G, Jasinskas V. Risk factors for fluctuations in corneal endothelial cell density (Review). Exp. Ther. Med. 2022;23(2):129. doi: 10.3892/etm.2021.11052.
  • Ong Tone S, Kocaba V, Bohm M, Wylegala A, White TL, Jurkunas UV. Fuchs endothelial corneal dystrophy: the vicious cycle of Fuchs pathogenesis. Prog. Retin. Eye Res. 2021;80:100863. doi: 10.1016/j.preteyeres.2020.100863.
  • Price MO, Mehta JS, Jurkunas UV, Price FW. Jr. Corneal endothelial dysfunction: evolving understanding and treatment options. Prog. Retin. Eye Res. 2021;82:100904. doi: 10.1016/j.preteyeres.2020.100904.
  • Jeang LJ, Margo CE, Espana EM. Diseases of the corneal endothelium. Exp. Eye Res. 2021;205:108495. doi: 10.1016/j.exer.2021.108495.
  • Smeringaiova I, Utheim TP, Jirsova K. Ex vivo expansion and characterization of human corneal endothelium for transplantation: a review. Stem. Cell Res. Ther. 2021;12(1):554. doi: 10.1186/s13287-021-02611-3.
  • Ziaei A, Schmedt T, Chen Y, Jurkunas UV. Sulforaphane decreases endothelial cell apoptosis in fuchs endothelial corneal dystrophy: a novel treatment. Invest. Ophthalmol. Vis. Sci. 2013;54(10):6724–6734. doi: 10.1167/iovs.13-12699.
  • Duan R, Du W, Guo W. EZH2: a novel target for cancer treatment. J. Hematol. Oncol. 2020;13(1):104. doi: 10.1186/s13045-020-00937-8.
  • Gulati N, Beguelin W, Giulino-Roth L. Enhancer of zeste homolog 2 (EZH2) inhibitors. Leuk Lymphoma. 2018;59(7):1574–1585. doi: 10.1080/10428194.2018.1430795.
  • Fujimura N, Kuzelova A, Ebert A, Strnad H, Lachova J, Machon O, Busslinger M, Kozmik Z. Polycomb repression complex 2 is required for the maintenance of retinal progenitor cells and balanced retinal differentiation. Dev. Biol. 2018;433(1):47–60. doi: 10.1016/j.ydbio.2017.11.004.
  • Lee C, Kim JK. Chromatin regulators in retinoblastoma: biological roles and therapeutic applications. J. Cell Physiol. 2021;236(4):2318–2332. doi: 10.1002/jcp.30022.
  • Yan N, Cheng L, Cho K, Malik MT, Xiao L, Guo C, Yu H, Zhu R, Rao RC, Chen DF. Postnatal onset of retinal degeneration by loss of embryonic Ezh2 repression of Six1. Sci. Rep. 2016;6(1):33887. doi: 10.1038/srep33887.
  • Liao K, Cui Z, Zeng Y, Liu J, Wang Y, Wang Z, Tang S, Chen J. Inhibition of enhancer of zeste homolog 2 prevents corneal myofibroblast transformation in vitro. Exp. Eye Res. 2021;208:108611. doi: 10.1016/j.exer.2021.108611.
  • Wan SS, Pan YM, Yang WJ, Rao ZQ, Yang YN. Inhibition of EZH2 alleviates angiogenesis in a model of corneal neovascularization by blocking FoxO3a-mediated oxidative stress. Faseb. J. 2020;34(8):10168–10181. doi: 10.1096/fj.201902814RRR.
  • Avedschmidt SE, Stagner AM, Eagle RC, Jr., Harocopos GJ, Dou Y, Rao RC. The targetable epigenetic tumor protein EZH2 is enriched in intraocular medulloepithelioma. Invest. Ophthalmol. Vis. Sci. 2016;57(14):6242–6246.
  • Consoli V, Sorrenti V, Grosso S, Vanella L. Heme oxygenase-1 signaling and redox homeostasis in physiopathological conditions. Biomolecules. 2021;11(4):589. doi: 10.3390/biom11040589.
  • Bellner L, Marrazzo G, van Rooijen N, Dunn MW, Abraham NG, Schwartzman ML. Heme oxygenase-2 deletion impairs macrophage function: implication in wound healing. Faseb. J. 2015;29(1):105–115. doi: 10.1096/fj.14-256503.
  • Halilovic A, Patil KA, Bellner L, Marrazzo G, Castellano K, Cullaro G, Dunn MW, Schwartzman ML. Knockdown of heme oxygenase-2 impairs corneal epithelial cell wound healing. J. Cell Physiol. 2011;226(7):1732–1740. doi: 10.1002/jcp.22502.
  • Pu Q, Guo XX, Hu JJ, Li AL, Li GG, Li XY. Nicotinamide mononucleotide increases cell viability and restores tight junctions in high-glucose-treated human corneal epithelial cells via the SIRT1/Nrf2/HO-1 pathway. Biomed. Pharmacother. 2022;147:112659. doi: 10.1016/j.biopha.2022.112659.
  • Hofstetter C, Kampka JM, Huppertz S, Weber H, Schlosser A, Muller AM, Becker M. Inhibition of KDM6 activity during murine ESC differentiation induces DNA damage. J. Cell Sci. 2016;129(4):788–803.
  • Liu X, Tseng SC, Zhang MC, Chen SY, Tighe S, Lu WJ, Zhu YT. LIF-JAK1-STAT3 signaling delays contact inhibition of human corneal endothelial cells. Cell Cycle. 2015;14(8):1197–1206. doi: 10.1080/15384101.2015.1013667.
  • Chen Z, Song F, Sun L, Zhao C, Gao N, Liu P, Ge H. Corneal integrity and thickness of central fovea after phacoemulsification surgery in diabetic and nondiabetic cataract patients. Arch. Med. Sci. 2018;14(4):818–825.
  • Frausto RF, Chung DD, Boere PM, Swamy VS, Duong HNV, Kao L, Azimov R, Zhang W, Carrigan L, Wong D, et al. ZEB1 insufficiency causes corneal endothelial cell state transition and altered cellular processing. PLoS One. 2019;14(6):e0218279. doi: 10.1371/journal.pone.0218279.
  • Shan K, Qiu J, Zhou R, Gu J, Zhang X, Zhang C, Xiang J, Xu J. RNA-seq identifies long non-coding RNAs as potential therapeutic targets for human corneal endothelial dysfunction under oxidative stress. Exp. Eye Res. 2021;213:108820. doi: 10.1016/j.exer.2021.108820.
  • Zhang Q, Xiong M, Liu J, Wang S, Du T, Kang T, Liu Y, Cheng H, Huang M, Gou M. Targeted nanoparticle-mediated LHPP for melanoma treatment. Int. J. Nanomed. 2019;14:3455–3468. doi: 10.2147/IJN.S196374.
  • Chen E, Bohm K, Rosenblatt M, Kang K. Epigenetic regulation of anterior segment diseases and potential therapeutics. Ocul. Surf. 2020;18(3):383–395. doi: 10.1016/j.jtos.2020.04.001.
  • Jin L, Cai Q, Wang S, Wang S, Mondal T, Wang J, Quan Z. Long noncoding RNA MEG3 regulates LATS2 by promoting the ubiquitination of EZH2 and inhibits proliferation and invasion in gallbladder cancer. Cell Death Dis. 2018;9(10):1017. doi: 10.1038/s41419-018-1064-1.
  • Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. Embo. J. 2003;22(20):5323–5335. doi: 10.1093/emboj/cdg542.
  • Liu T, Hou L, Huang Y. EZH2-specific microRNA-98 inhibits human ovarian cancer stem cell proliferation via regulating the pRb-E2F pathway. Tumour. Biol. 2014;35(7):7239–7247. doi: 10.1007/s13277-014-1950-9.
  • Wang J, Li P, Xu X, Zhang B, Zhang J. MicroRNA-200a Inhibits Inflammation and Atherosclerotic Lesion Formation by Disrupting EZH2-Mediated Methylation of STAT3. Front. Immunol. 2020;11:907. doi: 10.3389/fimmu.2020.00907.
  • Yu Z, Rayile A, Zhang X, Li Y, Zhao Q. Ulinastatin protects against lipopolysaccharide-induced cardiac microvascular endothelial cell dysfunction via downregulation of lncRNA MALAT1 and EZH2 in sepsis. Int. J. Mol. Med. 2017;39(5):1269–1276. doi: 10.3892/ijmm.2017.2920.
  • Wang Y, Mao J, Li X, Wang B, Zhou X. lncRNA HOTAIR mediates OGD/R-induced cell injury and angiogenesis in a EZH2-dependent manner. Exp. Ther. Med. 2022;23(1):99. doi: 10.3892/etm.2021.11022.
  • Liu R, Yan X. Sulforaphane protects rabbit corneas against oxidative stress injury in keratoconus through activation of the Nrf-2/HO-1 antioxidant pathway. Int. J. Mol. Med. 2018;42(5):2315–2328. doi: 10.3892/ijmm.2018.3820.
  • Wang B, Zuo X, Peng L, Wang X, Zeng H, Zhong J, Li S, Xiao Y, Wang L, Ouyang H, et al. Melatonin ameliorates oxidative stress-mediated injuries through induction of HO-1 and restores autophagic flux in dry eye. Exp. Eye Res. 2021;205:108491. doi: 10.1016/j.exer.2021.108491.
  • Ryter SW. Heme oxgenase-1, a cardinal modulator of regulated cell death and inflammation. Cells. 2021;10(3):515. doi: 10.3390/cells10030515.
  • Fan Y, Li C, Peng X, Jiang N, Hu L, Gu L, Zhu G, Zhao G, Lin J. Perillaldehyde ameliorates aspergillus fumigatus keratitis by activating the Nrf2/HO-1 signaling pathway and inhibiting dectin-1-mediated inflammation. Invest. Ophthalmol. Vis. Sci. 2020;61(6):51. doi: 10.1167/iovs.61.6.51.
  • Gong N, Ecke I, Mergler S, Yang J, Metzner S, Schu S, Volk HD, Pleyer U, Ritter T. Gene transfer of cyto-protective molecules in corneal endothelial cells and cultured corneas: analysis of protective effects in vitro and in vivo. Biochem. Biophys. Res. Commun. 2007;357(1):302–307. doi: 10.1016/j.bbrc.2007.03.146.
  • Ceravolo I, Mannino F, Irrera N, Squadrito F, Altavilla D, Ceravolo G, Pallio G, Minutoli L. Health potential of aloe vera against oxidative stress induced corneal damage: an “in vitro” study. Antioxidants (Basel). 2021;10(2):318. doi: 10.3390/antiox10020318.
  • Xu W, Yan Z, Hu F, Wei W, Yang C, Sun Z. Long non-coding RNA GAS5 accelerates oxidative stress in melanoma cells by rescuing EZH2-mediated CDKN1C downregulation. Cancer Cell Int. 2020;20(1):116. doi: 10.1186/s12935-020-01167-1.
  • Su X, Zhang H, Lei F, Wang R, Lin T, Liao L. Epigenetic therapy attenuates oxidative stress in BMSCs during ageing. J. Cell Mol. Med. 2022;26(2):375–384. doi: 10.1111/jcmm.17089.
  • Jiang Q, Isquith J, Zipeto MA, Diep RH, Pham J, Delos Santos N, Reynoso E, Chau J, Leu H, Lazzari E, et al. Hyper-Editing of Cell-Cycle Regulatory and Tumor Suppressor RNA Promotes Malignant Progenitor Propagation. Cancer Cell. 2019;35(1):81–94e7. doi: 10.1016/j.ccell.2018.11.017.
  • Xu S, Xu Y, Yin M, Zhang S, Liu P, Koroleva M, Si S, Little PJ, Pelisek J, Jin ZG. Flow-dependent epigenetic regulation of IGFBP5 expression by H3K27me3 contributes to endothelial anti-inflammatory effects. Theranostics. 2018;8(11):3007–3021. doi: 10.7150/thno.21966.
  • Qin Y, Qiao Y, Wang D, Li L, Li M, Yan G, Tang C. Target Nuclear Factor Erythroid 2-Related Factor 2 in Pulmonary Hypertension: molecular Insight into Application. Oxid. Med. Cell Longev. 2022;2022:7845503.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.