301
Views
17
CrossRef citations to date
0
Altmetric
Articles

Quantitative assessment of landslide susceptibility on the Loess Plateau in China

, , , , , & show all
Pages 489-516 | Received 03 Apr 2019, Accepted 27 Sep 2019, Published online: 10 Oct 2019

References

  • Akgun, A. (2012). A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at Izmir, Turkey. Landslides, 9(1), 93–106.
  • Akgun, A., Dag, S., & Bulut, F. (2008). Landslide susceptibility mapping for a landslide prone area (Findikli, NE of Turkey) by likelihood frequency ratio and weighted linear combination models. Environmental Geology, 54(6), 1127–1143.
  • Aril, A., Tetsuya, K., & Yoshinori, S. (2018). Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology, 318, 101–111.
  • Barbieri, G., & Cambuli, P. 2009. The weight of evidence statistical method in landslide susceptibility mapping of the Rio Pardu Valley (Sardinia, Italy). In:Proceedings of the 18th World IMACS/MODSIM Congress (pp. 13–17).
  • Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists. Computer Methods in the Geosciences, 13, 341–343.
  • Bonham-Carter, G. F. (2002). Geographic information systems for geoscientist: Modelling with GIS. In D. F. Merriam (Ed.), Computer methods in the geosciences (pp. 302–334). New York, NY: Pergamon/Elsevier.
  • Broothaerts, N., Kissi, E., Poesen, J., Van Rompaey, A., Getahun, K., Van Ranst, E., & Diels, J. (2012). Spatial patterns, causes and consequences of landslides in the Gilgel Gibe catchment, SW Ethiopia. Catena, 97(5), 127–136.
  • Carrara, A., & Guzzetti, F. (1995). Geographical information systems in assessing natural hazards. Dordrecht, Netherlands: Springer.
  • Catani, F., Casagli, N., Ermini, L., Righini, G., & Menduni, G. (2005). Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslides, 2(4), 329–342.
  • Çevik, E., & Topal, T. (2003). Gis-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, hendek (turkey). Environmental Geology, 44(8), 949–962.
  • China Earthquake Administration. (2015). Seismic ground motion parameters zonation map of China (pp. 190–205). Beijing, China: Seismological Press.
  • Conforti, M., Pascale, S., Robustelli, G., & Sdao, F. (2014). Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (Northern Calabria, Italy). Catena, 113(1), 236–250.
  • Dai, F. C., & Lee, C. F. (2002a). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42(3), 213–228.
  • Dai, F. C., & Lee, C. F. (2002b). Landslides on Natural Terrain: Physical characteristics and susceptibility mapping in Hong Kong. Mountain Research & Development, 22(1), 40–47.
  • Derbyshire, E. (2001). Geological hazards in loess terrain, with particular reference to the loess regions of China. Earth Science Reviews, 54(1), 231–260.
  • Fernandes, N. F., Netto, A. L. C., & Lacerda, W. A. (1994). Subsurface hydrology of layered colluviummantles in unchanneled valleys — South-eastern Brazil. Earth Surface Processes and Landforms, 19(7), 609–626.
  • Gao, G. R. (1988). Formation and development of the structure of collapsing loess in China. Engineering Geology, 25(2), 235–245.
  • Gökceoglu, C., & Aksoy, H. (1996). Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Engineering Geology, 44(1–4), 147–161.
  • Guo, C., Montgomery, D. R., Zhang, Y., Wang, K., & Yang, Z. (2015). Quantitative assessment of landslide susceptibility along the Xianshuihe fault zone, Tibetan Plateau, China. Geomorphology, 248, 93–110.
  • Hasekiogullari, G. D., & Ercanoglu, M. (2012). A new approach to use AHP in landslide susceptibility mapping: A case study at Yenice (Karabuk, NW Turkey). Natural Hazards, 63(2), 1157–1179.
  • Hong, H., Ilia, I., Tsangaratos, P., Chen, W., & Xu, C. (2017). A hybrid fuzzy weight of evidence method in landslide susceptibility analysis on the Wuyuan area, China. Geomorphology, 290, 1–16.
  • Hong, H., Shahabi, H., Shirzadi, A., Chen, W., Chapi, K., Ahmad, B. B., ., … Bui, D. T. (2019). Landslide susceptibility assessment at the Wuning area, China: A comparison between multi-criteria decision making, bivariate statistical and machine learning methods. Natural Hazards, 96(1), 173–212.
  • Hu, S., Qiu, H., Pei, Y., Cui, Y., Xie, W., Wang, X., … Cao, M. (2019). Digital terrain analysis of a landslide on the loess tableland using high-resolution topography data. Landslides, 16(3), 617–632.
  • Hu, S., Qiu, H., Wang, X., Gao, Y., Wang, N., Wu, J., … Cao, M. (2018). Acquiring high-resolution topography and performing spatial analysis of loess landslides by using low-cost UAVs. Landslides, 15(3), 593–612.
  • Ilia, I., & Tsangaratos, P. (2016). Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map. Landslides, 13(2), 379–397.
  • Kavzoglu, T., Kutlug, S. E., & Colkesen, I. (2015). Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm. Engineering Geology, 192, 101–112.
  • Kose, D. D., & Turk, K. (2018). GIS-based fully automatic landslide susceptibility analysis by weight-of-evidence and frequency ratio methods. Physical Geography. doi:10.1080/02723646.2018.1559583
  • Lee, S., & Choi, J. (2004). Landslide susceptibility mapping using GIS and the weight-of-evidence model. International Journal of Geographical Information Systems, 18(8), 789–814.
  • Lee, S., & Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4(1), 33–41.
  • Lee, S., & Sambath, T. (2006). Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environmental Geology, 50(6), 847–855.
  • Leng, Y., Peng, J., Wang, Q., Meng, Z., & Huang, W. (2018). A fluidized landslide occurred in the Loess Plateau: A study on loess landslide in South Jingyang tableland. Engineering Geology, 236, 129–136.
  • Li, L., Lan, H., Guo, C., Zhang, Y., Li, Q., & Wu, Y. (2016). A modified frequency ratio method for landslide susceptibility assessment. Landslides, 14(2), 1–15.
  • Liu, T. S. (1985). Loess and the environment. Beijing: Science Press. ( (in Chinese)).
  • Mandal, S., & Mandal, K. (2018). Modeling and mapping landslide susceptibility zones using GIS based multivariate binary logistic regression (LR) model in the Rorachu river basin of eastern Sikkim Himalaya, India. Modeling Earth Systems & Environment, 4(1), 69–88.
  • Meinhardt, M., Fink, M., & Tünschel, H. (2015). Landslide susceptibility analysis in central Vietnam based on an incomplete landslide inventory: Comparison of a new method to calculate weighting factors by means of bivariate statistics. Geomorphology, 234, 80–97.
  • Mohammady, M., Pourghasemi, H. R., & Pradhan, B. (2012). Landslide susceptibility mapping at Golestan Province, Iran: A comparison between frequency ratio, Dempster–Shafer, and weights-of-evidence models. Journal of Asian Earth Sciences, 61, 221–236.
  • Moore, I. D., Grayson, R. B., & Ladson, A. R. (2010). Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3–30.
  • Moreiras, S. M. (2005). Landslide susceptibility zonation in the Rio Mendoza Valley, Argentina. Geomorphology, 66(1), 345–357.
  • Oh, H. J., & Lee, S. (2010). Assessment of ground subsidence using GIS and the weights-of-evidence model. Engineering Geology, 115(1–2), 36–48.
  • Othman, A. A., Gloaguen, R., Andreani, L., & Rahnama, M. (2018). Improving landslide susceptibility mapping using morphometric features in the Mawat area, Kurdistan Region, NE Iraq: Comparison of different statistical models. Geomorphology, 319, 147–160.
  • Peng, D., Xu, Q., Liu, F., He, Y., Zhang, S., Qi, X., … Zhang, X. (2017). Distribution and failure modes of the landslides in Heitai terrace, China. Engineering Geology, 236, 97–110.
  • Peng, J., Fan, Z., Wu, D., Zhuang, J., Dai, F., Chen, W., & Zhao, C. (2015). Heavy rainfall triggered loess–Mudstone landslide and subsequent debris flow in Tianshui, China. Engineering Geology, 186, 79–90.
  • Peng, J., Wang, S., Wang, Q., Zhuang, J., Huang, W., Zhu, X., … Ma, P. (2019). Distribution and genetic types of loess landslides in China. Journal of Asian Earth Sciences, 170, 329–350.
  • Polykretis, C., & Chalkias, C. (2018). Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models. Natural Hazards, 93(1), 249–274.
  • Poonam, Rana, N., Champati Ray, P. K. C., Bisht, P., Bagri, D. S., Wasson, R. J., & Sundriyal, Y. (2016). Identification of landslide-prone zones in the geomorphically and climatically sensitive Mandakini valley, (Central Himalaya), for disaster governance using the weights of evidence method. Geomorphology, 284, 41–52.
  • Pradhan, B. (2011). Manifestation of an advanced fuzzy logic model coupled with Geo-information techniques to landslide susceptibility mapping and their comparison with logistic regression modelling. Environmental & Ecological Statistics, 18(3), 471–493.
  • Pradhan, B., & Lee, S. (2010). Landslide susceptibility assessment and factor effect analysis: Backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environmental Modelling & Software, 25(6), 747–759.
  • Pradhan, B., Lee, S., Mansor, S., Buchroithner, M., Jamaluddin, N., & Khujaimah, Z. (2008). Utilization of optical remote sensing data and geographic information system tools for regional landslide hazard analysis by using binomial logistic regression model. Journal of Applied Remote Sensing, 2(11), 023542.
  • Qiu, H., Cui, P., Hu, S., Liu, Q., Wang, Y. M., Gao, Y., & Deng, M. F. (2016). Size-frequency distribution of landslides in different landforms on the Loess Plateau of Northern Shaanxi. Earth Science, 41(2), 343–350.
  • Qiu, H., Cui, P., Regmi, A. D., Hu, S., & Hao, J. (2019). Loess slide susceptibility assessment using frequency ratio model and artificial neural network. Quarterly Journal of Engineering Geology and Hydrogeology, 52, 38–45.
  • Qiu, H., Cui, P., Regmi, A. D., Hu, S., Wang, X., & Zhang, Y. (2018). The effects of slope length and slope gradient on the size distributions of loess slides: Field observations and simulations. Geomorphology, 300, 69–76.
  • Qiu, H., Cui, P., Regmi, A. D., Hu, S., Wang, X., Zhang, Y., & He, Y. (2017). Influence of topography and volume on mobility of loess slides within different slip surfaces. Catena, 157, 180–188.
  • Regmi, N. R., Giardino, J. R., & Vitek, J. D. (2010). Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology, 115(1–2), 0–187.
  • Renée, S., & Moon, V. (2012). Comparison of bivariate and multivariate statistical approaches in landslide susceptibility mapping at a regional scale. Geomorphology, 161–162.
  • Shahabi, H., Hashim, M., & Ahmad, B. B. (2015). Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio, logistic regression, and fuzzy logic methods at the central Zab basin, Iran. Environmental Earth Sciences, 73(12), 8647–8668.
  • Sidle, R. C., & Ochiai, H. (2006). Landslides: Processes, prediction, and land use. Washington: American Geophysical Union.
  • Sotiris, V., George, P., & Athanassios, G. (2018). Mapping an earthquake-induced landslide based on UAV imagery; case study of the 2015 Okeanos landslide, Lefkada, Greece. Engineering Geology, 245, 141–152.
  • Sterlacchini, S., Ballabio, C., Blahut, J., Masetti, M., & Sorichetta, A. (2011). Spatial agreement of predicted patterns in landslide susceptibility maps. Geomorphology, 125, 51–61.
  • Sun, W. Y., Tian, Y. S., Mu, X. M., Zhai, J., Gao, P., & Zhao, G. (2017). Loess landslide inventory map based on GF-1 satellite imagery. Remote Sensing, 9(314), 1–17.
  • Trigila, A., Iadanza, C., Esposito, C., & Scarascia-Mugnozza, G. (2015). Comparison of logistic regression and random forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology, 249, 119–136.
  • Umar, Z., Pradhan, B., Ahmad, A., Jebur, M. N., & Tehrany, M. S. (2014). Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena, 118, 124–135.
  • Vakhshoori, V., & Zare, M. (2016). Landslide susceptibility mapping by comparing weight of evidence, fuzzy logic, and frequency ratio methods. Geomatics, Natural Hazards and Risk, 7(5), 1731–1752.
  • Wang, J. J., Liang, Y., Zhang, H. P., Wu, Y., & Lin, X. (2014). A loess landslide induced by excavation and rainfall. Landslides, 11(1), 141–152.
  • Wu, L. Z., Zhou, Y., Sun, P., Shi, J. S., Liu, G. G., & Bai, L. Y. (2017). Laboratory characterization of rainfall-induced loess slope failure. Catena, 150, 1–8.
  • Xu, L., Dai, F. C., Tham, L. G., Zhou, Y. F., & Wu, C. X. (2012). Investigating landslide-related cracks along the edge of two loess platforms in northwest China. Earth Surface Processes & Landforms, 37(10), 1023–1033.
  • Xu, L., Dai, F. C., Tu, X. B., Tham, L. G., Zhou, Y., & Iqbal, J. (2014). Landslides in a loess platform, North-West China. Landslides, 11(6), 993–1005.
  • Zêzere, J. L., Pereira, S., Melo, R., Oliveira, S. C., & Garcia, R. A. (2017). Mapping landslide susceptibility using data-driven methods. The Science of the Total Environment, 589, 250–267.
  • Zhang, D., Wang, G., Luo, C., Chen, J., & Zhou, Y. (2009). A rapid loess flowslide triggered by irrigation in China. Landslides, 6(1), 55–60.
  • Zhang, M., & Liu, J. (2010). Controlling factors of loess landslides in western China. Environmental Earth Sciences, 59(8), 1671–1680.
  • Zhu, A. X., Miao, Y. M., Yang, L., Bai, S., Liu, J., & Hong, H. (2018). Comparison of the presence-only method and presence-absence method in landslide susceptibility mapping. CATENA, 171, 222–233.
  • Zhuang, J., Peng, J., Wang, G., Javed, I., Wang, Y., & Li, W. (2017). Distribution and characteristics of landslide in Loess Plateau: A case study in Shaanxi province. Engineering Geology, 236, 89–96.
  • Zhuang, J., Peng, J., Zhu, X., Li, W., Ma, P., & Liu, T. (2016). Spatial distribution and susceptibility zoning of geohazards along the Silk Road, Xian-Lanzhou. Environmental Earth Sciences, 75(8), 711.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.