1,361
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Using soil micromorphology to assess the reliability of radiocarbon and OSL dating of fluvial deposits

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 710-762 | Received 09 Jun 2022, Accepted 03 Feb 2023, Published online: 01 Mar 2023

References

  • Aitken, M. J. (1998). An introduction to optical dating: The dating of quaternary sediments by the use of photon-stimulated luminescence. Oxford University Press.
  • Almond, P. C., & Tonkin, P. J. (1999). Pedogenesis by upbuilding in an extreme leaching and weathering environment, and slow loess accretion, south Westland, New Zealand. Geoderma, 92(1), 1–36. https://doi.org/10.1016/S0016-7061(99)00016-6
  • Baker, V. R. (1987). Paleoflood hydrology and extraordinary flood events. Journal of Hydrology, 96(1–4), 79–99. https://doi.org/10.1016/0022-1694(87)90145-4
  • Bateman, M. D., Boulter, C. H., Carr, A. S., Frederick, C. D., Peter, D., & Wilder, M. (2007). Detecting post-depositional sediment disturbance in sandy deposits using optical luminescence. Quaternary Geochronology, 2(1), 57–64. https://doi.org/10.1016/j.quageo.2006.05.004
  • Birkeland, P. W. (1984). Soils and geomorphology. Oxford University Press.
  • Blong, R. J., & Gillespie, R. (1978). Fluvially transported charcoal gives erroneous 14C ages for recent deposits. Nature, 271(5647), 739. https://doi.org/10.1038/271739a0
  • Brakenridge, G. R. (1984). Alluvial stratigraphy and radiocarbon dating along the Duck River, Tennessee; implications regarding flood-plain origin. Geological Society of America Bulletin, 95(1), 9–25. https://doi.org/10.1130/0016-7606(1984)95<9:ASARDA>2.0.CO;2
  • Brakenridge, G. R. (1985). Rate estimates for lateral bedrock erosion based on radiocarbon ages, Duck River, Tennessee. Geology, 13(2), 111–114. https://doi.org/10.1130/0091-7613(1985)13<111:REFLBE>2.0.CO;2
  • Brennan, B. J. (2003). Beta doses to spherical grains. Radiation Measurements, 37(4), 299–303. https://doi.org/10.1016/S1350-4487(03)00011-8
  • Brown, N. D. (2020). Which geomorphic processes can be informed by luminescence measurements? Geomorphology, 367, 179296. https://doi.org/10.1016/j.geomorph.2020.107296
  • Buurman, P., Jongmans, A. G., & PiPujol, M. D. (1998). Clay illuviation and mechanical clay infiltration — is there a difference? Quaternary International, 51, 66–69. https://doi.org/10.1016/S1040-6182(98)90225-7
  • Chumbley, C. A., Baker, R. G., & Bettis, E. A. (1990). Midwestern Holocene paleoenvironments revealed by floodplain deposits in northeastern Iowa. Science (American Association for the Advancement of Science), 249(4966), 272–274. https://doi.org/10.1126/science.249.4966.272
  • Cunningham, A. C., & Wallinga, J. (2012). Realizing the potential of fluvial archives using robust OSL chronologies. Quaternary Geochronology, 12, 98–106. https://doi.org/10.1016/j.quageo.2012.05.007
  • Davidson, D. A. (2002). Bioturbation in old arable soils: Quantitative evidence from soil micromorphology. Journal of Archaeological Science, 29(11), 1247–1253. https://doi.org/10.1006/jasc.2001.0755
  • Demko, T. M., Currie, B. S., & Nicoll, K. A. (2004). Regional paleoclimatic and stratigraphic implications of paleosols and fluvial/overbank architecture in the morrison formation (Upper Jurassic), Western Interior, USA. Sedimentary Geology, 167(3–4), 115–135. https://doi.org/10.1016/j.sedgeo.2004.01.003
  • Dezileau, L., Terrier, B., Berger, J. F., Blanchemanche, P., Latapie, A., Freydier, R., Bremond, L., Paquier, A., Lang, M., & Delgado, J. L. (2014). A multidating approach applied to historical slackwater flood deposits of the Gardon River, SE France. Geomorphology, 214, 56–68. https://doi.org/10.1016/j.geomorph.2014.03.017
  • Driese, S. G., Horn, S. P., Ballard, J. P., Boehm, M. S., & Li, Z. (2017). Micromorphology of late Pleistocene and Holocene sediments and a new interpretation of the Holocene chronology at Anderson Pond, Tennessee, USA. Quaternary Research, 87(1), 82–95. https://doi.org/10.1017/qua.2016.6
  • Driese, S. G., Li, Z. -H., & Horn, S. P. (2005). Late Pleistocene and Holocene climate and geomorphic histories as interpreted from a 23,000 14C yr B.P. paleosol and floodplain soils, southeastern West Virginia, USA. Quaternary Research, 63(2), 136–149. https://doi.org/10.1016/j.yqres.2004.10.005
  • Driese, S. G., Li, Z. -H., & McKay, L. D. (2008). Evidence for multiple, episodic, mid-Holocene Hypsithermal recorded in two soil profiles along an alluvial floodplain catena, southeastern Tennessee, USA. Quaternary Research, 69(2), 276–291. https://doi.org/10.1016/j.yqres.2007.12.003
  • Duller, G. T. (2003). Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements, 37(2), 161–165. https://doi.org/10.1016/S1350-4487(02)00170-1
  • Duller, G. T. (2004). Luminescence dating of quaternary sediments: Recent advances. Journal of Quaternary Science, 19(2), 183–192. https://doi.org/10.1002/jqs.809
  • England, J. F., Julien, P. Y., & Velleux, M. L. (2014). Physically-based extreme flood frequency with stochastic storm transposition and paleoflood data on large watersheds. Journal of Hydrology, 510, 228–245. https://doi.org/10.1016/j.jhydrol.2013.12.021
  • Fedoroff, N., Courty, M. A., & Thompson, M. L. (1990). Micromorphological evidence of paleoenvironmental change in Pleistocene and Holocene paleosols. Developments in Soil Science, 19(C), 653–665.
  • Felix-Henningsen, P., & Mauz, B. (2004). Palaeoenvironmental significance of soils on ancient dunes of the Northern Sahel and Southern Sahara of Chad: Naturraum Nordafrika. Erde, 135(3), 321–340.
  • Fitzpatrick, E. A. (1984). The micromorphology of soils. In E. A. Fitzpatrick (Ed.), Micromorphology of soils (pp. 331–357). Springer Netherlands.
  • FitzPatrick, E. A. (1993). Soil microscopy and micromorphology. J. Wiley.
  • Galbraith, R. F., & Roberts, R. G. (2012). Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations. Quaternary Geochronology, 11, 1–27. https://doi.org/10.1016/j.quageo.2012.04.020
  • Gliganic, L. A., May, J. H., & Cohen, T. J. (2015). All mixed up: Using single-grain equivalent dose distributions to identify phases of pedogenic mixing on a dryland alluvial fan. Quaternary International, 362(1), 23–33. https://doi.org/10.1016/j.quaint.2014.07.040
  • Goren, L., Fox, M., & Willett, S. D. (2014). Tectonics from fluvial topography using formal linear inversion: Theory and applications to the Inyo Mountains, California. Journal of Geophysical Research: Earth Surface, 119(8), 1651–1681. https://doi.org/10.1002/2014JF003079
  • Guérin, G., Mercier, N., & Adamiec, G. (2011). Dose-rate conversion factors: Update. Ancient TL, 29(1), 5–8.
  • Hardeman, W. D., Miller, R. A., & Swingle, G. D. (1966). Geologic map of Tennessee. In State Geologic Map. Nashville: Tennessee Division of Geology.
  • Hatano, N., & Yoshida, K. (2017). Sedimentary environment and paleosols of middle Miocene fluvial and lacustrine sediments in central Japan: Implications for paleoclimate interpretations. Sedimentary Geology, 347, 117–129. https://doi.org/10.1016/j.sedgeo.2016.11.004
  • He, Z., Long, H., Yang, L., & Zhou, J. (2019). Luminescence dating of a fluvial sequence using different grain size fractions and implications on Holocene flooding activities in Weihe Basin, central China. Quaternary Geochronology, 49, 123–130. https://doi.org/10.1016/j.quageo.2018.05.007
  • Horn, S. P., & Underwood, C. A. 2014. Methods for the study of soil charcoal as an indicator of fire and forest history in the appalachian region, U.S.A. In Proceedings, Wildland Fire in the Appalachians: Discussions among Managers and Scientists. General Technical Report SRS-199, Ed. T. A. E. Waldrop, 104–109. Ashville, North Carolina: U.S. Department of Agriculture, Forest Service, Southern Research Station.
  • Howard, A. J., Gearey, B. R., Hill, T., Fletcher, W., & Marshall, P. (2009). Fluvial sediments, correlations and palaeoenvironmental reconstruction: The development of robust radiocarbon chronologies. Journal of Archaeological Science, 36(12), 2680–2688. https://doi.org/10.1016/j.jas.2009.08.006
  • Huntley, D. J., Godfrey-Smith, D. I., & Thewalt, M. L. W. (1985). Optical dating of sediments. Nature, 313(5998), 105. https://doi.org/10.1038/313105a0
  • Jain, M., Murray, A. S., Bøtter-Jensen, L., & Wintle, A. G. (2005). A single-aliquot regenerative-dose method based on IR (1.49 eV) bleaching of the fast OSL component in quartz. Radiation Measurements, 39(3), 309–318. https://doi.org/10.1016/j.radmeas.2004.05.004
  • Jankowski, N. R., Jacobs, Z., & Goldberg, P. (2015). Optical dating and soil micromorphology at MacCauley’s beach, New South Wales, Australia: Optical dating and soil micromorphology at MacCauley’s beach. Earth Surface Processes and Landforms, 40(2), 229–242. https://doi.org/10.1002/esp.3622
  • Johnson, M. O., Mudd, S. M., Pillans, B., Spooner, N. A., Keith Fifield, L., Kirkby, M. J., & Gloor, M. (2014). Quantifying the rate and depth dependence of bioturbation based on optically-stimulated luminescence (OSL) dates and meteoric 10be. Earth Surface Processes and Landforms, 39(9), 1188–1196. https://doi.org/10.1002/esp.3520
  • Kemp, R. A., Jerz, H., Grottenthaler, W., & Preece, R. C. (1993). Pedosedimentary fabrics of soils within loess and colluvium in southern England and southern Germany. Elsevier Science & Technology.
  • Kochel, R. C., & Baker, V. R. (1982). Paleoflood Hydrology. Science, 215(4531), 353–361. https://doi.org/10.1126/science.215.4531.353
  • Kondolf, M. G., & Piégay, H. (2016). Tools in fluvial geomorphology. John Wiley & Sons, Incorporated.
  • Lecce, S. A., Pease, P. P., Gares, P. A., & Rigsby, C. A. (2004). Floodplain sedimentation during an extreme flood: The 1999 flood on the Tar River, Eastern North Carolina. Physical Geography, 25(4), 334–346. https://doi.org/10.2747/0272-3646.25.4.334
  • Leigh, D. S. (1996). Soil chronosequence of Brasstown Creek, Blue Ridge Mountains, USA. Catena, 26(1–2), 99–114. https://doi.org/10.1016/0341-8162(95)00040-2
  • Leigh, D. S. (2017). Vertical accretion sand proxies of gaged floods along the upper Little Tennessee river. Sedimentary Geology.
  • Lombardi, R., Davis, L., & Therrell, M. D. (2021). Flood variability in the common era: A synthesis of sedimentary records from Europe and North America. Physical Geography, 1–15. https://doi.org/10.1080/02723646.2021.1890894
  • Longhi, A., Trombino, L., & Guglielmin, M. (2021). Soil micromorphology as tool for the past permafrost and paleoclimate reconstruction. Catena, 207, 105628. https://doi.org/10.1016/j.catena.2021.105628
  • Mahan, S. A., Rittenour, T. M., Nelson, M. S., Ataee, N., Brown, N., Dewitt, R., Durcan, J., Evans, M., Feathers, J., Frouin, M., Guérin, G., Heydari, M., Huot, S., Jain, M., Keen-Zebert, A., Li, B., López, G. I., Neudorf, C., Porat, N. … Thomsen, K. (2022). Guide for interpreting and reporting luminescence dating results. Geological Society of America Bulletin. https://doi.org/10.1130/B36404.1
  • McDonald, E. V., & Busacca, A. J. (1990). Interaction between aggrading geomorphic surfaces and the formation of a late Pleistocene paleosol in the Palouse loess of eastern Washington State. Geomorphology, 3(3–4), 449–469. https://doi.org/10.1016/0169-555X(90)90016-J
  • McQueen, K. C., Vitek, J. D., & Carter, B. J. (1993). Paleoflood analysis of an alluvial channel in the south-central Great Plains: Black Bear Creek, Oklahoma. Geomorphology, 8(2–3), 131–146. https://doi.org/10.1016/0169-555X(93)90033-X
  • Meier, H. A., Driese, S. G., Nordt, L. C., Forman, S. L., & Dworkin, S. I. (2014). Interpretation of Late Quaternary climate and landscape variability based upon buried soil macro- and micromorphology, geochemistry, and stable isotopes of soil organic matter, Owl Creek, central Texas, USA. Catena, 114, 157–168. https://doi.org/10.1016/j.catena.2013.08.019
  • Meier, H. A., Nordt, L. C., Forman, S. L., & Driese, S. G. (2013). Late Quaternary alluvial history of the middle Owl Creek drainage basin in central Texas: A record of geomorphic response to environmental change. Quaternary International, 306, 24–41. https://doi.org/10.1016/j.quaint.2013.07.010
  • Nance, J. D. (1986). The Morrisroe Site: Projectile point types and radiocarbon dates from the Lower Tennessee River Valley. Midcontinental Journal of Archaeology, 11(1), 11–50. http://www.jstor.org/stable/20707958.
  • Nelson, M. S., Gray, H. J., Johnson, J. A., Rittenour, T. M., Feathers, J. K., & Mahan, S. A. (2015). User Guide for Luminescence Sampling in Archaeological and Geological Contexts. Advances in Archaeological Practice, 3(2), 166–177. https://doi.org/10.7183/2326-3768.3.2.166
  • Olley, J., Caitcheon, G., & Murray, A. (1998). The distribution of apparent dose as determined by optically stimulated Luminescence in small aliquots of fluvial quartz: Implications for dating young sediments. Quaternary Science Reviews, 17(11), 1033–1040. https://doi.org/10.1016/S0277-3791(97)00090-5
  • Prescott, J. R., & Hutton, J. T. (1994). Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiation Measurements, 23(2), 497–500. https://doi.org/10.1016/1350-4487(94)90086-8
  • Reimer, P. J. (2020). Composition and consequences of the IntCal20 radiocarbon calibration curve. Quaternary Research, 96, 22–27. https://doi.org/10.1017/qua.2020.42
  • Rhodes, E. J. (2011). Optically stimulated luminescence dating of sediments over the past 200,000 years. Annual Review of Earth and Planetary Sciences, 39(1), 461–488. https://doi.org/10.1146/annurev-earth-040610-133425
  • Rink, W. J., & Thompson, J. W. (2015). Encyclopedia of scientific dating methods. Springer Netherlands.
  • Rittenour, T. M. (2008). Luminescence dating of fluvial deposits: Applications to geomorphic, palaeoseismic and archaeological research. Boreas, 37(4), 613–635. https://doi.org/10.1111/j.1502-3885.2008.00056.x
  • Schoeneberger, P. J., Wysocki, D. A., Benham, E. C., & Staff, S. S. (2012). Field book for describing and sampling soils. Natural Resources Conservation Service.
  • Shen, H., Yu, L., Zhang, H., Zhao, M., & Lai, Z. (2015). OSL and radiocarbon dating of flood deposits and its paleoclimatic and archaeological implications in the Yihe River Basin, East China. Quaternary Geochronology, 30, 398–404. https://doi.org/10.1016/j.quageo.2015.03.005
  • Smith, C., Soreghan, G. S., & Ohta, T. (2018). Scanning electron microscope (SEM) microtextural analysis as a paleoclimate tool for fluvial deposits; a modern test. GSA Bulletin, 130(7–8), 1256–1272. https://doi.org/10.1130/B31692.1
  • Stoops, G., Marcelino, V., & Mees, F. (2010). Interpretation of micromorphological features of soils and regoliths. Elsevier.
  • Stoops, G., & Vepraskas, M. J. (2003). Guidelines for analysis and description of soil and regolith thin sections. Soil Science Society of America.
  • Strunk, A., Olsen, J., Sanei, H., Rudra, A., & Larsen, N. K. (2020). Improving the reliability of bulk sediment radiocarbon dating. Quaternary Science Reviews, 242, 106442. https://doi.org/10.1016/j.quascirev.2020.106442
  • Stuiver, M., Reimer, P. J., & Reimer, R. W. 2020. Calib 8.2
  • Thompson, J. A., Chen, J., Yang, H., Li, T., Bookhagen, B., & Burbank, D. (2018). Coarse- versus fine-grain quartz OSL and cosmogenic 10be dating of deformed fluvial terraces on the northeast Pamir margin, northwest China. Quaternary Geochronology, 46, 1–15. https://doi.org/10.1016/j.quageo.2018.01.002
  • Trimble, S. W., & Carey, W. P. (1984). Sediment characteristics of Tennessee streams and reservoirs. United States Geological Survey, open-file report 84–749, p. 38. https://doi.org/10.3133/ofr84749
  • Tennessee Valley Authority, T. V. A. (1961). TVA : Tennessee River history. In Tennessee River history. U.S. Govt. Print. Off.
  • Tennessee Valley Authority, T. V. A. 2019a. Navigation on the Tennessee River.
  • Tennessee Valley Authority, T. V. A. 2019b. TVA dam safety.
  • Ufnar, D. F. (2007). Clay coatings from a modern soil chronosequence: A tool for estimating the relative age of well-drained paleosols. Geoderma, 141(3–4), 181–200. https://doi.org/10.1016/j.geoderma.2007.05.017
  • United States Department of Agriculture, National Cooperative Soil Survey (2001) https://soilseries.sc.egov.usda.gov/OSD_Docs/S/STASER.html. Staser Series.
  • United States Geological Survey, U.S.G.S. (2001). Tennessee river (TENN) basin study. National Water Quality Assessment Program (NAWQA). https://tn.water.usgs.gov/lten/tenn.html
  • United States Department of Agriculture, U. S. D. A. (2014). Illustrated guide to soil taxonomy (Version 1.0. ed.). United States Department of Agriculture, Natural Resources Conservation Service.
  • Vandenberghe, J., Wang, X., & Lu, H. (2011). Differential impact of small-scaled tectonic movements on fluvial morphology and sedimentology (the Huang Shui catchment, NE Tibet Plateau). Geomorphology, 134(3–4), 171–185. https://doi.org/10.1016/j.geomorph.2011.06.020
  • van Mourik, J. M., Nierop, K. G. J., & Vandenberghe, D. A. G. (2010). Radiocarbon and optically stimulated luminescence dating based chronology of a polycyclic driftsand sequence at Weerterbergen (SE Netherlands). Catena, 80(3), 170–181. https://doi.org/10.1016/j.catena.2009.11.004
  • Wang, L., & Leigh, D. S. (2012). Late-holocene paleofloods in the upper little Tennessee River valley, Southern Blue Ridge Mountains, USA. The Holocene, 22(9), 1061–1066. https://doi.org/10.1177/0959683612437863
  • Warren, R. B. (1974). Soil Survey Meigs County. In S. C. Service (Ed.), Tennessee, p. 71. United States Department of Agriculture.
  • Waythomas, C. F., & Jarrett, R. D. (1994). Flood geomorphology of Arthurs Rock Gulch, Colorado: Paleoflood history. Geomorphology, 11(1), 15–40. https://doi.org/10.1016/0169-555X(94)90040-X
  • Wintle, A. G., & Murray, A. S. (2000). Quartz OSL: Effects of thermal treatment and their relevance to laboratory dating procedures. Radiation Measurements, 32(5–6), 387–400. https://doi.org/10.1016/S1350-4487(00)00057-3
  • Zha, X., Huang, C., Pang, J., Liu, J., & Xue, X. (2015). Reconstructing the palaeoflood events from slackwater deposits in the upper reaches of Hanjiang River, China. Quaternary International, 380-381, 358. https://doi.org/10.1016/j.quaint.2014.06.029