14,413
Views
4
CrossRef citations to date
0
Altmetric
Articles

Generalist diet of Microraptor zhaoianus included mammals

, , ORCID Icon, & ORCID Icon
Article: e2144337 | Received 05 Oct 2021, Accepted 27 Sep 2022, Published online: 20 Dec 2022

LITERATURE CITED

  • Alexander, D. E., Gong, E., Martin, L. D., Burnham, D. A. & Falk, A. R. (2010). Model tests of gliding with different hindwing configurations in the four-winged dromaeosaurid Microraptor gui. Proceedings of the National Academy of Sciences, 107, 2972–2976.
  • Barsbold, R., & Osmólska, H. (1999). The skull of Velociraptor (Theropoda) from the Late Cretaceous of Mongolia. Acta Palaeontologica Polonica, 44, 189–219.
  • Birn-Jeffery, A. V., Miller, C. E., Naish, D., Rayfield, E. J., & Hone, D. W. (2012). Pedal claw curvature in birds, lizards and Mesozoic dinosaurs–complicated categories and compensating for mass-specific and phylogenetic control. PLoS ONE, 7(12).
  • Blumenschine, R. J. (1986). Carcass consumption sequences and the archaeological distinction of scavenging and hunting. Journal of Human Evolution, 15, 639–659.
  • Bock, W. J. (1966). An approach to the functional analysis of bill shape. The Auk, 83, 10–51.
  • Carbone, C., Mace, G. M., Roberts, S. C., & Macdonald, D. W. (1999). Energetic constraints on the diet of terrestrial carnivores. Nature, 402, 286–288.
  • Carbone, C., Teacher, A., & Rowcliffe, J. M. (2007). The costs of carnivory. PLoS Biology, 5, e22.
  • Charig, A. J., & Milner, A. C. (1997). Baryonyx walkeri, a fish-eating dinosaur from the Wealden of Surrey, Bulletin of the Natural History Museum, Geology Series, 53, 11–70.
  • Chatterjee, S., & Templin, R. J. (2007). Biplane wing planform and flight performance of the feathered dinosaur Microraptor gui. Proceedings of the National Academy of Sciences, 104, 1576–1580.
  • Chen, M., & Luo, Z. X. (2013). Postcranial skeleton of the Cretaceous mammal Akidolestes cifellii and its locomotor adaptations. Journal of Mammalian Evolution, 20, 159–189.
  • Chin, K. (2012). What did dinosaurs eat: coprolites and other direct evidence of dinosaur diets. In J. O. Farlow & M. J. Brett-Surman (Eds.), The Complete Dinosaur (pp. 371–382). Indiana University Press.
  • Chin, K., Tokaryk, T. T., Erickson, G. M., & Calk, L. C. (1998). A king-sized theropod coprolite. Nature, 393, 680–682.
  • Christiansen, P., & Fariña R. A. (2004). Mass prediction in theropod dinosaurs. Historical Biology, 16, 85–92.
  • Christiansen, P., & Wroe, S. (2007). Bite forces and evolutionary adaptations to feeding ecology in carnivores. Ecology, 88, 347–358.
  • Cobb, S. E. & Sellers, W. I. (2020). Inferring lifestyle for Aves and Theropoda: a model based on curvatures of extant avian ungual bones. PloS ONE, 15, e0211173.
  • Cohen, J. E., Pimm, S. L., Yodzis, P., & Saldaña, J. (1993). Body sizes of animal predators and animal prey in food webs. Journal of Animal Ecology, 62, 67–78.
  • Collins P. W., Guthrie, D. A., Rick, T. C., & Erlandson, J. M. (2010). Analysis of prey remains excavated from an historic bald eagle nest site on San Miguel Island, California. Proceedings of the Sixth California Islands Symposium. Arcata, CA: Institute for Wildlife Studies: 103–120.
  • Costa, G. C. (2009). Predator size, prey size, and dietary niche breadth relationships in marine predators. Ecology, 90, 2014–2019.
  • Currie, P. J., & Chen, P. (2001) Anatomy of Sinosauropteryx prima from Liaoning, northeastern China. Canadian Journal of Earth Sciences, 38, 1705–1727. https://doi.org/10.1139/e01-050
  • Currie, P. J. & Evans, D. C. (2020). Cranial anatomy of new specimens of Saurornitholestes langstoni (Dinosauria, Theropoda, Dromaeosauridae) from the Dinosaur Park Formation (Campanian) of Alberta. Anatomical Record, 303, 691–715.
  • Currie, P. J. & Jacobsen. A. R. (1995): An azhdarchid pterosaur eaten by a velociraptorine theropod. Canadian Journal of Earth Sciences, 32, 922–925.
  • Dal Sasso, C., & Maganuco, S. (2011). Scipionyx samniticus (Theropoda: Compsognathidae) from the Lower Cretaceous of Italy. Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, 37, 1–281.
  • Dececchi, T. A., & Larsson, H. C. E. (2011). Assessing arboreal adaptations of bird antecedents: testing the ecological setting of the origin of the avian flight stroke. PLoS ONE, 6, e22292.
  • Dececchi, T. A., Larsson, H. C. E., & Habib, M. B. (2016). The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents. PeerJ, 4, e2159.
  • Dececchi, T. A., Larsson, H. C. E., Pittman, M. & Habib, M. B. (2020a). High flyer or high fashion? A comparison of flight potential among small bodied paravians. Bulletin of the American Museum of Natural History, 420, 295–320.
  • Dececchi, T. A., Mloszewska, A. M., Holtz, T. R., Habib, M. B., & Larsson, H. C. E. (2020b). The fast and the frugal: Divergent locomotory strategies drive limb lengthening in theropod dinosaurs. PLoS ONE, 15, e0223698.
  • Dececchi, T. A., Roy, A., Pittman, M., Kaye, T. G., Xu, X., Habib, M. B., Larsson, H.C.E., Wang, X., & Zhang, X. (2020c). Aerodynamics show membrane-winged were a poor gliding dead-end. iScience, 23, 101574.
  • DeVault, T. L., Rhodes, Jr. O. E., & Shivik, J. A. (2003). Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos, 102, 225–234.
  • Dodson, P. (1975). Functional and ecological significance of relative growth in Alligator. Journal of Zoology, 175, 315–355.
  • Dyke, G., De Kat, R., Palmer, C., Van Der Kindere, J., Naish, D., & Ganapathisubramani, B. (2013). Aerodynamic performance of the feathered dinosaur Microraptor and the evolution of feathered flight. Nature Communications, 4, 1–9.
  • Evans, S. E., & Wang, Y. (2010). A new lizard (Reptilia: Squamata) with exquisite preservation of soft tissue from the Lower Cretaceous of Inner Mongolia, China. Journal of Systematic Palaeontology, 8, 81–95.
  • Farhadinia, M. S., Hosseini-Zavarei, F., Nezami, B., Harati, H., Absalan, H., Fabiano, E., & Marker, L. (2012). Feeding ecology of the Asiatic cheetah Acinonyx jubatus venaticus in low prey habitats in northeastern Iran: Implications for effective conservation. Journal of Arid Environments, 87, 206–211.
  • Fiorillo, A. R. (1991). Prey bone utilisation by predatory dinosaurs. Palaeogeography, Palaeoclimatology, Palaeoecology, 88, 157–166.
  • Fowler, D. W., Freedman, E. A., Scannella, J. B., & Kambic, R. E. (2011). The predatory ecology of Deinonychus and the origin of flapping in birds. PLoS ONE, 6, e28964.
  • Frederickson, J. A., Engel, M. H., & Cifelli, R. L. (2020). Ontogenetic dietary shifts in Deinonychus antirrhopus (Theropoda; Dromaeosauridae): Insights into the ecology and social behavior of raptorial dinosaurs through stable isotope analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 552, 109780.
  • Freimuth, W. J., Varricchio, D. J., Brannick, A. L., Weaver, L. N. & Wilson Mantilla, G. P. (2021). Mammal-bearing gastric pellets potentially attributable to Troodon formosus at the Cretaceous Egg Mountain locality, Two Medicine Formation, Montana, USA. Palaeontology, 64, 699–725.
  • Holtz, T. R., (2003). Dinosaur predation. In P. H. Kelley, M. Kowalewski, and T. A. Hansen. Predator-Prey Interactions in the Fossil Record (pp. 325–340). Springer.
  • Hone, D., Tsuihiji, T., Watabe, M., & Tsogtbaatr, K. (2012). Pterosaurs as a food source for small dromaeosaurs. Palaeogeography, Palaeoclimatology, Palaeoecology, 331, 27–30.
  • Hone, D. W., & Rauhut, O. W. (2010). Feeding behaviour and bone utilization by theropod dinosaurs. Lethaia, 43, 232–244.
  • Hone, D. W., & Watabe, M. (2010). New information on scavenging and selective feeding behaviour of tyrannosaurids. Acta Palaeontologica Polonica, 55, 627–635.
  • Hone, D. W. E., Choiniere, J., Sullivan, C., Xu, W., Pittman, M., & Tan, Q. (2010). New evidence for a trophic relationship between the dinosaurs Velociraptor and Protoceratops. Palaeogeography, Palaeoclimatology, Palaeoecology, 291, 488–492.
  • Hone, D. W. E., & Holtz Jr., T. R. (2017). A century of spinosaurs-a review and revision of the Spinosauridae with comments on their ecology. Acta Geologica Sinica-English Edition, 91, 1120–1132.
  • Hone, D. W. E., & Tanke, D. H. (2015). Pre-and postmortem tyrannosaurid bite marks on the remains of Daspletosaurus (Tyrannosaurinae: Theropoda) from Dinosaur Provincial Park, Alberta, Canada. PeerJ, 3: e885.
  • Hwang, S. H., Norell, M. A., Qiang, J., & Keqin, G. (2004). A large compsognathid from the Early Cretaceous Yixian Formation of China. Journal of Systematic Palaeontology, 2, 13–30.
  • Jacobsen, A. R. (1998) Feeding behavior of carnivorous dinosaurs as determined by tooth marks on dinosaur bones. Historical Biology, 13, 17–26.
  • Ji, Q., & Ji, S. A. (1997). Advance in the study of the avian Sinosauropteryx prima. Chinese Geology, 242, 30–32.
  • Ji, S. A., Ji, Q., Lü, J., & Yuan, C. (2007). A new giant compsognathid dinosaur with long filamentous integuments from Lower Cretaceous of Northeastern China. Acta Geologica Sinica, 81, 8–15.
  • Kiat, Y., Balaban, A., Sapir, N., O'Connor, J. K., & Xu, A. (2020). Sequential molt in a feathered dinosaur and implications for early paravian ecology and locomotion. Current Biology, 30, 18.
  • Kozlowski, J., & Gawelczyk, A. T. (2002). Why are species’ body size distributions usually skewed to the right? Functional Ecology, 16, 419–432.
  • Larivière, S., & Pasitschniak-Arts, M. (1996). Vulpes vulpes. Mammal Species, 537, 1–11.
  • Larsson, H. C. E., Hone, D. W. E., Dececchi, T.A., Sullivan, C., & Xu, X. (2010). The winged non-avian dinosaur Microraptor fed on mammals: implications for the Jehol Biota ecosystems. Journal of Vertebrate Paleontology, 30A, 39.
  • Leakey, L. N., Milledge, S. A. H., Leakey, S. M., Edung, J., Haynes, P., Kiptoo, D. K., & McGeorge, A. (1999). Diet of striped hyaena in northern Kenya. African Journal of Ecology, 37, 314–326.
  • Li, Q., Gao, K. Q., Meng, Q., Clarke, J. A., Shawkey, M. D., D’Alba, L., Pei, R., Ellison, M., Norell, M. A., & Vinther, J. (2012). Reconstruction of Microraptor and the evolution of iridescent plumage. Science, 335, 1215–1219.
  • Luo, Z. X., Ji, Q., Wible, J. R., & Yuan, C. X. (2003). An Early Cretaceous tribosphenic mammal and metatherian evolution. Science, 302, 1934–1940.
  • Maxwell, W. D., & Ostrom, J. A. (1995). Taphonomy and paleobiological implications of Tenontosaurus–Deinonychus associations. Journal of Vertebrate Paleontology, 15, 707–712.
  • Meng, Q. J., Grossnickle, D., Liu, D., Zhang, Y. G., Neander, A. I., Ji, Q., & Luo, Z. X. (2017). New gliding mammaliaforms from the Jurassic. Nature, 548, 291–296.
  • Meri, S. (2010). Length-weight allometries in lizards. Journal of Zoology, 281, 218–226.
  • Messel, H. & Vorlicek, G. C. (1989). Ecology of Crocodylus porosus in northern Australia. In Crocodiles: their ecology, management and conservation (pp.164–183). IUCN.
  • Morse, D. R., Lawton, J. H., Dodson, M. M., & Williamson, M. H. (1985). Fractal dimension of vegetation and the distribution of arthropod body lengths. Nature, 314, 731–733.
  • Mrykalo, R. J., Grigione, M. M., & Sarno, R. J. (2009). A comparison of available prey and diet of Florida Burrowing Owls in urban and rural environments: a first study. The Condor, 111, 556–559.
  • Naish, D. (2000). Theropod dinosaurs in the trees: a historical review of arboreal habits amongst nonavian theropods. Archaeopteryx, 18, 35–41.
  • Nesbitt, S. J., Turner, A. H., Erickson, G. M., & Norell, M. A. (2006). Prey choice and cannibalistic behaviour in the theropod Coelophysis. Biology Letters, 2, 611–614.
  • Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T., & Kratina, P. (2018). Diet tracing in ecology: Method comparison and selection. Methods in Ecology and Evolution, 9, 278–291.
  • Norell, M. A., Clark, J. M., Turner, A. H., Makovicky, P. J., Barsbold, R., & Rowe, T. (2006). A new dromaeosaurid theropod from Ukhaa Tolgod (Ömnögov, Mongolia). American Museum Novitates, 3545, 1–51.
  • O’Connor, J., Zheng, X., Dong, L., Wang, X., Wang, Y., Zhang, X., & Zhou, Z. (2019). Microraptor with ingested lizard suggests non-specialized digestive function. Current Biology, 29, 2423–2429.
  • O'Connor, J., Zhou, Z., & Xu, X. (2011). Additional specimen of Microraptor provides unique evidence of dinosaurs preying on birds. Proceedings of the National Academy of Sciences, 108, 19662–19665.
  • O’Gorman, E. J., & Hone, D. W. (2012). Body size distribution of the dinosaurs. PloS ONE, 7, e51925.
  • Ostrom, J. H. (1964). A functional analysis of jaw mechanics in the dinosaur Triceratops. Postilla, 88, 1–35.
  • Ostrom, J. H. (1978). The osteology of Compsognathus longipes Wagner. Zitteliana, 4, 73–118.
  • Pei, R., Li, Q., Meng, Q., Gao, K. Q., & Norell, M. A. (2014). A new specimen of Microraptor (Theropoda: Dromaeosauridae) from the Lower Cretaceous of western Liaoning, China. American Museum Novitates, 3821, 1–28.
  • Pei, R., Pittman, M., Goloboff, P. A., Dececchi, T. A., Habib, M. B., Kaye, T. G., Larsson, H. C. E., Norell, M. A., Brusatte, S. L., & Xu, X. (2020). Potential for powered flight neared by most close avialan relatives, but few crossed its thresholds. Current Biology, 30, 4033–4046.
  • Powers, M. J., Sullivan, C., & Currie, P. J. (2020). Re-examining ratio based premaxillary and maxillary characters in Eudromaeosauria (Dinosauria: Theropoda): Divergent trends in snout morphology between Asian and North American taxa. Palaeogeography, Palaeoclimatology, Palaeoecology, 547, 109704.
  • Preuschoft, H., & Witzel, U. (2002). Biomechanical investigations on the skulls of reptiles and mammals. Senckenbergiana Lethaea, 82, 207–222.
  • Radloff, F. G. & Du Toit, J. T. (2004). Large predators and their prey in a southern African savanna: a predator's size determines its prey size range. Journal of Animal Ecology, 73, 410–423.
  • Roach, B. T., & Brinkman, D. L. (2007). A reevaluation of cooperative pack hunting and gregariousness in Deinonychus antirrhopus and other nonavian theropod dinosaurs. Bulletin of the Peabody Museum of Natural History, 48, 103–138.
  • Sakamoto, M., Lloyd, G. T., & Benton, M. J. (2010). Phylogenetically structured variance in felid bite force: the role of phylogeny in the evolution of biting performance. Journal of Evolutionary Biology, 23, 463–478.
  • Samuels, J.X., & Van Valkenburgh, B. (2008). Skeletal indicators of locomotor adaptations in living and extinct rodents. Journal of Morphology, 269, 1387–1411.
  • Schmitz, L., & Motani, R. (2011). Nocturnality in dinosaurs inferred from scleral ring and orbit morphology. Science, 332, 705–708.
  • Slater, G. J., Dumont, E. R., & Van Valkenburgh, B. (2009). Implications of predatory specialization for cranial form and function in canids. Journal of Zoology, 278, 181–188.
  • Therrien, F. (2005). Mandibular force profiles of extant carnivorans and implications for the feeding behaviour of extinct predators. Journal of Zoology, 267, 249–270.
  • Therrien, F., Henderson, D. M., & Ruff, C. B. (2005). Bite me: biomechanical models of theropod mandibles and implications for feeding behavior. In K. Carpenter (Ed.), The Carnivorous Dinosaurs (pp. 179–237). Indiana University Press.
  • Therrien, F., Zelenitsky, D. K., Voris, J. T., & Tanaka, K. (2021). Mandibular force profiles and tooth morphology in growth series of Albertosaurus sarcophagus and Gorgosaurus libratus (Tyrannosauridae: Albertosaurinae) provide evidence for an ontogenetic dietary shift in tyrannosaurids. Canadian Journal of Earth Sciences, 58, 812–828.
  • Thomason, J. J. (1991). Cranial strength in relation to estimated biting forces in some mammals. Canadian Journal of Zoology, 69, 2326–2333.
  • Varricchio, D. J., (2001). Gut contents from a Cretaceous tyrannosaurid: implications for theropod dinosaur digestive tracts. Journal of Paleontology, 75, 401–406.
  • Vézina, A. F. (1985). Empirical relationships between predator and prey size among terrestrial vertebrate predators. Oecologia, 67, 555–565.
  • Walmsley, C. W., Smits, P. D., Quayle, M. R., McCurry, M. R., Richards, H. S., Oldfield, C. C., Wroe, S., Clausen, P. D., & McHenry, C. R. (2013). Why the long face? The mechanics of mandibular symphysis proportions in crocodiles. PLoS ONE, 8, e53873.
  • Wang, M., O’Connor, J. K., Xu, X., & Zhou, Z. (2019). A new Jurassic scansoriopterygid and the loss of membranous wings in theropod dinosaurs. Nature, 569, 256–259.
  • Wilson, J. P., Woodruff, D. C., Gardner, J. D., Flora, H. M., Horner, J. R., & Organ, C. L., (2016). Vertebral adaptations to large body size in theropod dinosaurs. PLoS ONE, 11, e0158962.
  • Woodroffe, R., Lindsey, P. A., Romañach, S. S., & Ranah S. M. O. (2007). African wild dogs (Lycaon pictus) can subsist on small prey: implications for conservation. Journal of Mammalogy, 88, 181–193.
  • Xing, L., Bell, P. R., Persons IV, W. S., Ji, S., Miyashita, T., Burns, M. E., Ji, Q., & Currie, P. J. (2012). Abdominal contents from two large Early Cretaceous compsognathids (Dinosauria: Theropoda) demonstrate feeding on confuciusornithids and dromaeosaurids. PLoS ONE, 7, e44012.
  • Xing, L., Persons IV, W. S., Bell, P. R., Xu, X., Zhang, J., Miyashita, T., Wang, F., & Currie, P. J., (2013). Piscivory in the feathered dinosaur Microraptor. Evolution, 67, 2441–2445.
  • Xu, X., Choiniere, J. N., Pittman, M., Tan, Q., Xiao, D., Li, Z., Tan, L., Clark, J. M., Norell, M. A., Hone, D. W. E., & Sullivan, C. (2010). A new dromaeosaurid (Dinosauria: Theropoda) from the Upper Cretaceous Wulansuhai Formation of Inner Mongolia, China. Zootaxa, 2403, 1–9.
  • Xu, X., Zhou, Z., & Wang, X. (2000). The smallest known non-avian theropod dinosaur. Nature, 408, 705–708.
  • Xu, X., Zhou, Z., Wang, X., Kuang, X., Zhang, F., & Du, X. (2003). Four-winged dinosaurs from China. Nature, 421, 335–340.
  • Zheng, X., Wang, X., Sullivan, C., Zhang, X., Zhang, F., Wang, Y., Li, F., & Xu, X. (2018). Exceptional dinosaur fossils reveal early origin of avian-style digestion. Scientific Reports, 8, 14217.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.