3,458
Views
0
CrossRef citations to date
0
Altmetric
Articles

Orbit size and estimated eye size in dinosaurs and other archosaurs and their implications for the evolution of visual capabilities

ORCID Icon, , , , , , , , , , , , , , , , , , , , , , & ORCID Icon show all
Article: e2295518 | Received 06 Jul 2023, Accepted 11 Dec 2023, Published online: 23 Jan 2024

LITERATURE CITED

  • Angielczyk, K. D., & Schmitz, L. (2014). Nocturnality in synapsids predates the origin of mammals by over 100 million years. Proceedings of the Royal Society B, 281(1793), 20141642.
  • Apaldetti, C., Martínez, R. N., Cerda, I. A., Pol, D., & Alcober, O. (2018). An early trend towards gigantism in Triassic sauropodomorph dinosaurs. Nature Ecology & Evolution, 2(8), 1227–1232.
  • Ausprey, I. J. (2021). Adaptations to light contribute to the ecological niches and evolution of the terrestrial avifauna. Proceedings of the Royal Society B, 288(1950), 20210853.
  • Baker, J., & Venditti, C. (2019). Rapid change in mammalian eye shape is explained by activity pattern. Current Biology, 29(6), 1082–1088.
  • Bertrand, O. C., Shelley, S. L., Williamson, T. E., Wible, J. R., Chester, S. G., Flynn, J. J., … & Brusatte, S. L. (2022). Brawn before brains in placental mammals after the end-Cretaceous extinction. Science, 376(6588), 80–85.
  • Bestwick, J., Godoy, P.L., Maidment, S.C., Ezcurra, M.D., Wroe, M., Raven, T.J., Bonsor, J.A. and Butler, R.J., 2022. Relative skull size evolution in Mesozoic archosauromorphs: potential drivers and morphological uniqueness of erythrosuchid archosauriforms. Palaeontology, 65(3), p.e12599.
  • Bright, J. A. (2014). A review of paleontological finite element models and their validity. Journal of Paleontology, 88(4), 760–769.
  • Bright, J. A., Marugán-Lobón, J., Cobb, S. N., & Rayfield, E. J. (2016). The shapes of bird beaks are highly controlled by nondietary factors. Proceedings of the National Academy of Sciences, 113(19), 5352–5357.
  • Brooke, M. D. L., Hanley, S., & Laughlin, S. (1999). The scaling of eye size with body mass in birds. Proceedings of the Royal Society of London. Series B: Biological Sciences, 266(1417), 405–412.
  • Brown, C. M., Evans, D. C., Campione, N. E., O'Brien, L. J., & Eberth, D. A. (2013). Evidence for taphonomic size bias in the Dinosaur Park Formation (Campanian, Alberta), a model Mesozoic terrestrial alluvial-paralic system. Palaeogeography, Palaeoclimatology, Palaeoecology, 372, 108–122.
  • Cashmore, D. D., Butler, R. J., & Maidment, S. C. (2021). Taxonomic identification bias does not drive patterns of abundance and diversity in theropod dinosaurs. Biology Letters, 17(7), 20210168.
  • Cerio, D. G., & Witmer, L. M. (2020). Modeling visual fields using virtual ophthalmoscopy: incorporating geometrical optics, morphometrics, and 3D visualization to validate an interdisciplinary technique. Vision Research, 167, 70–86.
  • Cerio, D. G., & Witmer, L. M. (2023). Orbital soft tissues, bones, and allometry: Implications for the size and position of crocodylian eyes. The Anatomical Record, 306, 2537–2561.
  • Choiniere, J.N., Neenan, J.M., Schmitz, L., Ford, D.P., Chapelle, K.E., Balanoff, A.M., Sipla, J.S., Georgi, J.A., Walsh, S.A., Norell, M.A. and Xu, X., 2021. Evolution of vision and hearing modalities in theropod dinosaurs. Science, 372(6542), 610–613.
  • Chure D. J. (1998). On the orbit of theropod dinosaurs. GAIA: Revista de geociências, 15, 233–240.
  • Cunningham, J. A., Rahman, I. A., Lautenschlager, S., Rayfield, E. J., & Donoghue, P. C. (2014). A virtual world of paleontology. Trends in Ecology & Evolution, 29(6), 347–357.
  • Ezcurra, M. D. (2016). The phylogenetic relationships of basal archosauromorphs, with an emphasis on the systematics of proterosuchian archosauriforms. PeerJ, 4, e1778.
  • Fernández, M. S., Archuby, F., Talevi, M., & Ebner, R. (2005). Ichthyosaurian eyes: paleobiological information content in the sclerotic ring of Caypullisaurus (Ichthyosauria, Ophthalmosauria). Journal of Vertebrate Paleontology, 25(2), 330–337.
  • Foth, C., Brusatte, S. L., & Butler, R. J. (2012). Do different disparity proxies converge on a common signal? Insights from the cranial morphometrics and evolutionary history of Pterosauria (Diapsida: Archosauria). Journal of Evolutionary Biology, 25(5), 904–915.
  • Hall, M. I. (2008a). The anatomical relationships between the avian eye, orbit and sclerotic ring: implications for inferring activity patterns in extinct birds. Journal of Anatomy, 212(6), 781–794.
  • Hall, M. I. (2008b). Comparative analysis of the size and shape of the lizard eye. Zoology, 111(1), 62–75.
  • Hall, M. I., & Heesy, C. P. (2011). Eye size, flight speed and Leuckart's Law in birds. Journal of Zoology, 283(4), 291–297.
  • Hall, M. I., & Ross, C. F. (2007). Eye shape and activity pattern in birds. Journal of Zoology, 271(4), 437–444.
  • Hammer, Ø., & Harper, D. A. (2001). Past: paleontological statistics software package for educaton and data anlysis. Palaeontologia Electronica, 4(1), 1.
  • Heesy, C. P., & Hall, M. I. (2010). The nocturnal bottleneck and the evolution of mammalian vision. Brain, Behavior and Evolution, 75(3), 195–203.
  • Henderson D. M. (2003). The eyes have it: the sizes, shapes, and orientations of theropod orbits as indicators of skull strength and bite force. Journal of Vertebrate Paleontology, 22, 766–778.
  • Hirata, M., Arimoto, C., Hattori, N., & Anzai, H. (2019). Can cattle visually discriminate between green and dead forages at a short distance while moving in the field?. Animal Cognition, 22, 707–718.
  • Howery, L. D., Bailey, D. W., Ruyle, G. B., & Renken, W. J. (2000). Cattle use visual cues to track food locations. Applied Animal Behaviour Science, 67(1–2), 1–14.
  • Howland, H. C., Merola, S., & Basarab, J. R. (2004). The allometry and scaling of the size of vertebrate eyes. Vision research, 44(17), 2043–2065.
  • Kiltie, R. A. (2000). Scaling of visual acuity with body size in mammals and birds. Functional Ecology, 14(2), 226–234.
  • Kirk, E. C. (2006). Effects of activity pattern on eye size and orbital aperture size in primates. Journal of Human Evolution, 51(2), 159–170.
  • Knell, R. J., Naish, D., Tomkins, J. L., & Hone, D. W. (2013). Sexual selection in prehistoric animals: detection and implications. Trends in Ecology & Evolution, 28(1), 38–47.
  • Knoll, F., Lautenschlager, S., Kawabe, S., Martínez, G., Espílez, E., Mampel, L., & Alcalá, L. (2021). Palaeoneurology of the early cretaceous iguanodont Proa valdearinnoensis and its bearing on the parallel developments of cognitive abilities in theropod and ornithopod dinosaurs. Journal of Comparative Neurology, 529(18), 3922–3945.
  • Laughlin, S. B., de Ruyter van Steveninck, R. R., & Anderson, J. C. (1998). The metabolic cost of neural information. Nature Neuroscience, 1(1), 36–41.
  • Lautenschlager, S. (2013). Cranial myology and bite force performance of Erlikosaurus andrewsi: a novel approach for digital muscle reconstructions. Journal of Anatomy, 222(2), 260–272.
  • Lautenschlager, S. (2022). Functional and ecomorphological evolution of orbit shape in Mesozoic archosaurs is driven by body size and diet. Communications Biology, 5(1), 1–11.
  • Lauters, P., Vercauteren, M., & Godefroit, P. (2022). Endocasts of ornithopod dinosaurs: Comparative anatomy. Progress in Brain Research, 275, 1–23
  • Lönnstedt, O. M., McCormick, M. I., & Chivers, D. P. (2013). Predator-induced changes in the growth of eyes and false eyespots. Scientific Reports, 3(1), 2259.
  • Maddison, W. P., & Maddison, D. R. (2021). Mesquite: a modular system for evolutionary analysis, v. 3.70. See http://mesquiteproject.org.
  • MacIver, M.A., Schmitz, L., Mugan, U., Murphey, T.D. and Mobley, C.D. (2017). Massive increase in visual range preceded the origin of terrestrial vertebrates. Proceedings of the National Academy of Sciences, 114(12), E2375–E2384.
  • Marcé-Nogué, J., Fortuny, J., De Esteban-Trivigno, S., Sánchez, M., Gil, L., & Galobart, À. (2015). 3D computational mechanics elucidate the evolutionary implications of orbit position and size diversity of early amphibians. PLoS ONE, 10(6), e0131320.
  • Martin, G. R. (1983). Schematic eye models in vertebrates. In Progress in sensory physiology (pp. 43–81). Springer, Berlin, Heidelberg.
  • Martin, G. R. (1994). Form and function in the optical structure of bird eyes. In Perception and motor control in birds (pp. 5–34). Springer, Berlin, Heidelberg.
  • Martin, G. R. (2017). The sensory ecology of birds. Oxford University Press, Oxford.
  • Martin, G. R., & Katzir, G. (2000). Sun shades and eye size in birds. Brain Behavior and Evolution, 56(6), 340–344.
  • Martínez-Ortega, C., Santos, E. S., & Gil, D. (2014). Species-specific differences in relative eye size are related to patterns of edge avoidance in an Amazonian rainforest bird community. Ecology and Evolution, 4(19), 3736–3745.
  • Marugán-Lobón, J., & Buscalioni, Á. D. (2003). Disparity and geometry of the skull in Archosauria (Reptilia: Diapsida). Biological Journal of the Linnean Society, 80(1), 67–88.
  • Marugán-Lobón, J., Gómez-Recio, M., & Nebreda, S. M. (2022). The geometry of synapsid skull disparity. Historical Biology, 34(8), 1692–1700.
  • Moran, D., Softley, R., & Warrant, E. J. (2015). The energetic cost of vision and the evolution of eyeless Mexican cavefish. Science Advances, 1(8), e1500363.
  • Motani, R., Rothschild, B. M., & Wahl, W. (1999). Large eyeballs in diving ichthyosaurs. Nature, 402(6763), 747–747.
  • Nilsson, D. E., Warrant, E. J., Johnsen, S., Hanlon, R., & Shashar, N. (2012). A unique advantage for giant eyes in giant squid. Current Biology, 22(8), 683–688.
  • O’Gorman, E. J., & Hone, D. W. (2012). Body size distribution of the dinosaurs. PLoS ONE, 7(12), e51925.
  • Paulina-Carabajal, A., Bronzati, M., & Cruzado-Caballero, P. (2022). Paleoneurology of Non-avian Dinosaurs: An Overview. In M.T. Dozo, A. Paulina-Carabjal, T.E. Macrini, and S. Walsh (Eds), Paleoneurology of Amniotes: New Directions in the Study of Fossil Endocasts, (pp. 267–332). Springer.
  • Pinheiro, J., Bates, D., Debroy, S. & Sarkar, D. (2018). nlme: linear and nonlinear mixed effects models. R package 3.1-137. https://CRAN.R-project.org/package=nlme
  • Potier, S., Mitkus, M., Bonadonna, F., Duriez, O., Isard, P. F., Dulaurent, T., Mentek, M. & Kelber, A. (2017). Eye size, fovea, and foraging ecology in accipitriform raptors. Brain Behavior and Evolution, 90(3), 232–242.
  • R Core Team. (2023). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://cran.r-project.org
  • Rich, T. H., & Rich, P. V. (1989). Polar dinosaurs and biotas of the Early Cretaceous of southeastern Australia: National Geographic Society Research Reports, v. 5.
  • Rinehart, L. F., Lucas, S. G., Heckert, A. B., Spielmann, J. A., & Celeskey, M. D. (2009). The Paleobiology of Coelophysis bauri (Cope) from the Upper Triassic (Apachean) Whitaker quarry, New Mexico, with detailed analysis of a single quarry block: Bulletin 45 (Vol. 45). New Mexico Museum of Natural History and Science.
  • Ross, C. F., Hall, M. I., & Heesy, C. P. (2007). Were basal primates nocturnal? Evidence from eye and orbit shape. In M.J. Ravosa & M. Dagosto (Eds), Primate origins: Adaptations and Evolution (pp. 233–256). Springer.
  • Schmitt, M. H., Shuttleworth, A., Ward, D., & Shrader, A. M. (2018). African elephants use plant odours to make foraging decisions across multiple spatial scales. Animal Behaviour, 141, 17–27.
  • Schmitz, L. (2009). Quantitative estimates of visual performance features in fossil birds. Journal of Morphology, 270(6), 759–773.
  • Schmitz, L., & Motani, R. (2010). Morphological differences between the eyeballs of nocturnal and diurnal amniotes revisited from optical perspectives of visual environments. Vision Research, 50(10), 93–946.
  • Schmitz, L., & Motani, R. (2011). Nocturnality in dinosaurs inferred from scleral ring and orbit morphology. Science, 332(6030), 705–708.
  • Stevens K.A. (2006). Binocular vision in theropod dinosaurs. Journal of Vertebrate Paleontology, 26, 321–330.
  • Stutz, R. S., Banks, P. B., Proschogo, N., & McArthur, C. (2016). Follow your nose: leaf odour as an important foraging cue for mammalian herbivores. Oecologia, 182, 643–651.
  • Stutz, R. S., Croak, B. M., Proschogo, N., Banks, P. B., & McArthur, C. (2017). Olfactory and visual plant cues as drivers of selective herbivory. Oikos, 126(2), 259–268.
  • Thomas, R. J., Székely, T., Powell, R. F., & Cuthill, I. C. (2006). Eye size, foraging methods and the timing of foraging in shorebirds. Functional Ecology, 20, 157–165.
  • Warrant, E. (2004). Vision in the dimmest habitats on earth. Journal of Comparative Physiology A, 190, 765–789.
  • Witmer, L. M. (1995). Homology of facial structures in extant archosaurs (birds and crocodilians), with special reference to paranasal pneumaticity and nasal conchae. Journal of Morphology, 225(3), 269–327.
  • Witmer, L. M., & Thomason, J. J. (1995). The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. Functional morphology in vertebrate paleontology, 1, 19–33.
  • Witmer, L. M., Ridgely, R. C., Dufeau, D. L., & Semones, M. C. (2008). Using CT to peer into the past: 3D visualization of the brain and ear regions of birds, crocodiles, and nonavian dinosaurs. In H. Endo & R. Frey (Eds), Anatomical imaging: towards a new morphology (pp. 67–87). Springer.
  • Zanno, L. E., & Makovicky, P. J. (2013). No evidence for directional evolution of body mass in herbivorous theropod dinosaurs. Proceedings of the Royal Society B: Biological Sciences, 280(1751), 20122526.
  • Zaret, T. M., & Kerfoot, W. C. (1975). Fish predation on Bosmina longirostris: Body-size selection versus visibility selection. Ecology, 56(1), 232–237.
  • Zelenitsky, D. K., Therrien, F., & Kobayashi, Y. (2009). Olfactory acuity in theropods: palaeobiological and evolutionary implications. Proceedings of the Royal Society B: Biological Sciences, 276(1657), 667–673.
  • Zelenitsky, D. K., Therrien, F., Ridgely, R. C., McGee, A. R., & Witmer, L. M. (2011). Evolution of olfaction in non-avian theropod dinosaurs and birds. Proceedings of the Royal Society B: Biological Sciences, 278(1725), 3625–3634