211
Views
0
CrossRef citations to date
0
Altmetric
Articles

A new dryolestid fossil from the Late Jurassic illuminates molar root structure of dryolestids

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: e2322740 | Received 18 Jan 2023, Accepted 19 Feb 2024, Published online: 02 Apr 2024

LITERATURE CITED

  • Averianov, A. O., Martin, T., & Lopatin, A. V. (2013). A new phylogeny for basal Trechnotheria and Cladotheria and affinities of South American endemic Late Cretaceous mammals. Naturwissenschaften, 100, 311–326.
  • Averianov, A. O., Martin, T., & Lopatin, A. V. (2014). The oldest dryolestid mammal from the Middle Jurassic of Siberia. Journal of Vertebrate Paleontology, 34, 924–931.
  • Averianov, A. O., Martin, T., Skutschas, P. P., Danilov, I. G., Schultz, J. A., Schellhorn, R., Obraztsova, E., Lopatin, A., Sytchevskaya, E., Kuzmin, I., & Krasnolutskii, S. (2016). Middle Jurassic vertebrate assemblage of Berezovsk coal mine in Western Siberia (Russia). Global Geology 19, 187–204.
  • Bader, K. S. (2008). Insect trace fossils on dinosaur bones from the Upper Jurassic Morrison Formation, northeastern Wyoming, and their use in vertebrate taphonomy. MS Thesis. Department of Geology, the University of Kansas. Pp. 1–128 (URI http://hdl.handle.net/1808/4173).
  • Bader, K. S., Hasiotis, S. T., & Martin, L. D. (2009). Application of forensic science techniques to trace fossils on dinosaur bones from a quarry in the Upper Jurassic Morrison Formation, Northeastern Wyoming. Palaios, 24, 140–158.
  • Bhullar B.-A. S, Manafzadeh, A., Miyamae, J.A., Hoffman, E., Brainerd, E. L., Musinsky, C., & Crompton, A. W. (2019). Rolling of the jaw is essential for mammalian chewing and tribosphenic molar function. Nature, 566, 528–532.
  • Bosshardt, D. D., Bergomi, M., Vaglio, G., & Wiskott, A. (2008). Regional structural characteristics of bovine periodontal ligament samples and their suitability for biomechanical tests. Journal of Anatomy, 212, 319–329.
  • Briggs, D. E. G. (2010). Decay distorts ancestry. Nature, 463, 741–742.
  • Briggs, D. E. G., & McMahon, S. (2015). The role of experiments in investigating the taphonomy of exceptional preservation. Frontiers in Palaeontology 59, 1–11.
  • Butler, P. M. (1939). The teeth of the Jurassic mammals. Proceedings of the Zoological Society of London 109, 329–356.
  • Chimento, N. R., Agnolin, F. L., & Novas, F. E. (2012). The Patagonian fossil mammal Necrolestes: a Neogene survivor of Dryolestoidea. Revista del Museo Argentino de Ciencias Naturales, n. s. 14(2), 261–306.
  • Chimento, N. R., Agnolin, F. L. & Novas, F. E. (2015). The bizarre ‘metatherians’ Groeberia and Patagonia, late surviving members of gondwanatherian mammals. Historical Biology, 27, 603–623. https://doi.org/10.1080/08912963.2014.903945
  • Close, R. A., Davis, B. M., Walsh, S., Woloniewicz, A. S., Friedman, M., & Benson, R. B. J. (2016). A lower jaw of Palaeoxonodon from the Middle Jurassic of the Isle of Skye, Scotland, sheds new light on the diversity of British stem therians. Palaeontology, 59, 155–169.
  • Connizzo, B. K., Sun, L., Lacin, N., Gendelman, A., Solomonov, I., Sagi, I., Grodzinsky, A. J., & Naveh, G. R. S. (2021). Nonuniformity in periodontal ligament: mechanics and matrix composition. Journal of Dental Research, 100, 179–186.
  • Crompton, A. W. (1971). The origin of the tribosphenic molar. Zoological Journal of the Linnean Society (Supplement), 50, 65–87.
  • Crompton, A. W., & Jenkins, F. A. (1968). Molar occlusion in Late Triassic mammals. Biological Reviews, 43, 427–458.
  • Cuenca-Bescós, G., Badiola, A., Canudo, J. I., Gasca, J. M., & Moreno-Azanza, M. (2010). New Dryolestidan Mammal from the Hauterivian—Barremian Transition of the Iberian Peninsula. Acta Palaeontologica Polonica, 56, 257–267.
  • Davis, B. M. (2011). Evolution of the tribosphenic molar pattern in early mammals, with comments on the “dual-origin” hypothesis. Journal of Mammalian Evolution, 18, 227–244.
  • Davis, B. M. (2012). Micro-computed tomography reveals a diversity of peramuran mammals from the Purbeck Group (Berriasian) of England. Palaeontology, 55, 789–817.
  • Ensom, P. C., & Sigogneau-Russell, D. (1998). New dryolestoid mammals from the basal Cretaceous Purbeck Limestone Group of southern England. Palaeontology, 41, 35–55.
  • Foster, J. R. (2003). Paleoecological analysis of the vertebrate fauna of the Morrison Formation (Upper Jurassic), Rocky Mountain region, U.S.A. New Mexico Museum of Natural History & Science Bulletin, 23, 1–95.
  • Foster, J. R. (2020). The Jurassic West: the dinosaurs of the Morrison Formation and their world (Second Edition). Indiana University Press.
  • Grossnickle, D. M., Smith, S. M., & Wilson, G. P. (2019). Untangling the multiple ecological radiations of early mammals. Trends in Ecology & Evolution, 34, 936–949.
  • Harper, T., Parras, A., & Rougier, G. W. (2019). Reigitherium (Meridiolestida, Mesungulatoidea) an enigmatic Late Cretaceous mammal from Patagonia, Argentina: morphology, affinities, and dental evolution. Journal of Mammalian Evolution, 26, 447–478. https://doi.org/10.1007/s10914-018-9437-x
  • Hughes, E. M., Wible, J. R., Spaulding, M. & Luo, Z.-X. (2015). Mammalian petrosal from the Upper Jurassic Morrison Formation of Fruita, Colorado. Annals of Carnegie Museum, 83, 1–17.
  • Jäger, K. R. K., Luo, Z.-X., & Martin. T. (2019). Postcranial skeleton of Henkelotherium guimarotae (Cladotheria, Mammalia) and locomotor adaptation. Journal of Mammalian Evolution, 27, 349–372. https://doi.org/10.1007/s10914-018-09457-2
  • Kelt, D. A. & Patton, J. L. (2020). A Manual of the Mammalia: An Homage to Lawlor's “Handbook to the Orders and Families of Living Mammals.” The University of Chicago Press.
  • Kermack, K. A., Mussett, F., & Rigney, H. W. (1973). The lower jaw of Morganucodon. Zoological Journal of Linnean Society 53, 87–175.
  • Kielan-Jaworowska, Z., Cifelli, R. L., & Luo, Z.-X. (2004). Mammals from the age of dinosaurs: origins, evolution, and structure. Columbia University Press, New York.
  • Krebs, B. (1971). Evolution of the mandible and lower dentition in dryolestids (Pantotheria, Mammalia). Zoological Journal of the Linnean Society (Supplement), 50, 89–102.
  • Krebs, B. (1991). Das Skelett von Henkelotherium guimarotae gen. et sp. nov. (Eupantotheria, Mammalia) aus dem Oberen Jura von Portugal. Berliner Geowissenschaftliche Abhandlungen A, 133, 1–110.
  • Krebs, B. (1993). Das Gebiß von Crusafontia (Eupantotheria, Mammalia)—Funde aus der Unter-Kreide von Galve und Uña. Berliner Geowissenschaftliche Abhandlungen E, 9, 233–252.
  • Lasseron, M., Martin, T., Allain, R., Haddoumi, H., Jalil, N.-E., Zouhri, S. and Gheerbrant, E. (2022). An African radiation of ‘Dryolestoidea’ (Donodontidae, Cladotheria) and its significance for mammalian evolution. Journal of Mammalian Evolution, 29, 733–761. https://doi.org/10.1007/s10914-022-09613-9
  • LeBlanc, A.R.H., & Reisz, R. R. (2013). Periodontal ligament, cementum, and alveolar bone in the oldest herbivorous tetrapods, and their evolutionary significance. PLoS One, 8, e74697. doi:10.1371/journal.pone.0074697.
  • Lucas, P. W. (2004). Dental functional morphology: how teeth work. University of Cambridge Press.
  • Luo, Z.-X. (2007). Transformation and diversification in the early mammalian evolution. Nature, 450, 1011–1019.
  • Luo, Z.-X., Bhullar, B.-A. S., Crompton, A. W., Neander, A. I., & Rowe, T. B. (2022). Reexamination of the mandibular and dental morphology of the Early Jurassic mammaliaform Hadrocodium wui. Acta Palaeontologica Polonica, 67, 95–113. https://doi.org/10.4202/app.00949.2021
  • Luo, Z. X., Cifelli, R. L., & Kielan-Jaworowska Z. (2001). Dual origin of tribosphenic mammals. Nature, 409, 53–57.
  • Luo, Z.-X., Kielan-Jaworowska, Z., & Cifelli, R. L. (2002). In quest for a phylogeny of Mesozoic mammals. Acta Palaeontologica Polonica, 47, 1–78.
  • Luo, Z.-X. & Martin, T. (2023). Mandibular and dental characteristics of the Late Jurassic Mammal Henkelotherium guimarotae (Paurodontidae, Dryolestida). PalZ (Paläontologische Zeitschrift), 97, 569–619. https://doi.org/10.1007/s12542-023-00651-z
  • Luo, Z.-X., Ruf, I., & Martin, T. (2012). The petrosal and inner ear of the Late Jurassic cladotherian mammal Dryolestes leiriensis and implications for evolution of ear in therian mammals. Zoological Journal of the Linnean Society (London), 166, 433–463.
  • Marsh, O. C. (1878). Fossil mammals from the Rocky Mountains. American Journal of Science. 15, 459.
  • Marsh, O. C. (1879). Notice of new Jurassic mammals. American Journal of Science, 20, 396–398.
  • Martin, T. (1997). Tooth replacement in Late Jurassic Dryolestidae (Eupantotheria, Mammalia). Journal of Mammalian Evolution, 4, 1–18.
  • Martin, T. (1998). The premolars of Crusafontia cuencana (Dryolestidae, Mammalia) from the Early Cretaceous (Barremian) of Spain. Berliner Geowissenschaftliche Abhandlungen E, 28, 119–126.
  • Martin, T. (1999). Dryolestidae (Dryolestoidea, Mammalia) aus dem Oberen Jura von Portugal. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 550, 1–119.
  • Martin, T. (2000). The dryolestids and the small ‘peramurid’ from the Guimarota coal mine. In T. Martin & B. Krebs (Eds.), Guimarota—A Jurassic Ecosystem (pp. 109–120), Verlag Dr. Friedrich Pfeil, Munich.
  • Martin, T. (2013). Mammalian postcranial bones from the Late Jurassic of Portugal and their implications for forelimb evolution. Journal of Vertebrate Paleontology, 33, 1432–1441.
  • Martin, T. (2018). Mesozoic mammals–early mammalian diversity and ecomorphological adaptations. In F. E. Zachos & R. J. Asher (Eds.), Handbook of Zoology Mammalia, Mammalian Evolution, Diversity and Systematics (pp. 199–299), De Gruyter, Berlin.
  • Martin, T., Jäger, K. R. K., Plogschties, T., Schwermann, A. H., Brinkkötter, J. J., & Schultz, J. A. (2020). Molar diverstiy and functional adaptations in Mesozoic mammals. In: T. Martin, & W. v. Koenigswald (Eds.), Mammalian Teeth–Form and Function (pp. 187–214), Verlag Dr. Friedrich Pfeil, Munich.
  • Martin, T., Averianov, A. O., Schultz, J. A., Schwermann, A. H., & Wings, O. (2021). A derived dryolestid mammal indicates possible insular endemism in the Late Jurassic of Germany. The Science of Nature, 108, 1–12.
  • Martin, T., Goin, F. J., Schultz, J. A., & Gelfo J. N. (2022). Early Late Cretaceous mammals from southern Patagonia (Santa Cruz Province, Argentina). Cretaceous Research, 133, 105127. https://doi.org/10.1016/j.cretres.2021.105127
  • Martin, T. & Schultz, J. A. (2023). Deciduous dentition, tooth replacement, and mandibular growth in the Late Jurassic docodontan Haldanodon exspectatus (Mammaliaformes). Journal of Mammalian Evolution, 30, 507–531. https://doi.org/10.1007/s10914-023-09668-2
  • Martinelli, A. G., Soto, S., Acuña, F. J., Goin, J., Kaluza, J. E., Bostelmann, P. H., Fonseca, M., Reguero, M. A., Leppe, M., & Vargas, A. O. (2021). New cladotherian mammal from southern Chile and the evolution of mesungulatid meridiolestidans at the dusk of the Mesozoic era. Scientific Reports, 11, 7594. https://doi.org/10.1038/s41598-021-87245-4
  • McKenna. M. C. (1975). Toward a phylogenetic classification of the Mammalia. In W. P. Luckett, & F. S. Szalay (Eds.), Phylogeny of the Primates (pp. 21–46). Plenum Publishing Corporation, New York.
  • Naveh, G. R. S., Foster, J. E., Silva Santisteban, T. M., Yang, X., & Olsen, B. R. (2018). Nonuniformity in ligaments is a structural strategy for optimizing functionality. Proceedings of the National Academy of Sciences, 115, 9008–9013.
  • O'Meara, R. N., & Thompson, R. S. (2014). Were there Miocene meridiolestidans? Assessing the phylogenetic placement of Necrolestes patagonensis and the presence of a 40 million year meridiolestidan ghost lineage. Journal of Mammalian Evolution, 21, 271–284. doi.org/10.1007/s10914-013-9252-3.
  • Panciroli, E. L., Benson, R. B. J., & Luo, Z.-X. (2019). The mandible and dentition of Borealestes serendipitus (Docodonta) from the Middle Jurassic of Skye, Scotland. Journal of Vertebrate Paleontology. 39, e1621884 (17 pages) (doi.org/10.1080/02724634.2019.1621884).
  • Parrington, F. R. (1971). On the Upper Triassic mammals. Philosophical Transactions of the Royal Society B, 261, 231–272.
  • Patterson, B. (1956). Early Cretaceous mammals and the evolution of mammalian molar teeth. Fieldiana: Geology, 13, 1–105.
  • Prothero, D. R. (1981). New Jurassic mammals from Como Bluff, Wyoming, and the interrelationships of non-tribosphenic Theria. Bulletin of the American Museum of Natural History 167, 277–326.
  • Rougier, G. W., Apesteguía, S., & Gaetano, L. C. (2011). Highly specialized mammalian skulls from the Late Cretaceous of South America. Nature, 479, 98–102.
  • Rougier, G. W., Wible, J. R., Beck, R. M. D., & Apesteguía, S. (2012). The Miocene mammal Necrolestes demonstrates the survival of a Mesozoic nontherian lineage into the late Cenozoic of South America. Proceedings of the National Academy of Sciences, 49, 20053–20058.
  • Rougier, G. W., A. G. Martinelli, & Forasiepi, A. M. (2021a). Mesozoic mammals from South America and their forerunners. Springer Earth System Sciences, Switzerland.
  • Rougier, G. W., Turazzinni, G. F., Cardozo, M. S., Harper, T., Lires, A. I., & Canessa, L A. (2021b). New specimens of Reigitherium bunodontum from the Late Cretaceous La Colonia Formation, Patagonia, Argentina and meridiolestidan diversity in South America. Journal of Mammalian Evolution 28, 1051–1081. https://doi.org/10.1007/s10914-021-09585-2
  • Sansom, R. S., & Willis, M. A. (2013). Fossilization causes organisms to appear erroneously primitive by distorting evolutionary trees. Scientific Reports, 3, 2545. https://doi.org/10.1038/srep02545
  • Sansom, R. S., Gabbott, S. E., & Purnell, M. A. (2010). Non-random decay of chordate characters causes bias in fossil interpretation. Nature, 463, 797–800.
  • Schultz, J. A., & Martin, T., (2011). Wear pattern and functional morphology of dryolestoid molars (Mammalia, Cladotheria). Paläontologische Zeitschrift, 85, 269–285.
  • Schultz, J. A., & Martin, T. (2014). Function of pretribosphenic and tribosphenic mammalian molars inferred from 3D animation. Naturwissenschaften, 101, 771–781.
  • Schultz, J. A., Bhullar, B.-A.S., & Luo, Z.-X. (2019). Re-examination of the Jurassic mammaliaform Docodon victor by computed tomography and occlusal functional analysis. Journal of Mammalian Evolution, 26, 9–38. (doi.org/10.1007/s10914-017-9418) (published online in 2017).
  • Self, C. J. (2015a). Cricetid rodents: is molar root morphology an indicator of diet. Zoomorphology 134, 309–316.
  • Self, C. J. (2015b). Dental root size in bats with diets of different hardness. Journal of Morphology, 276, 1065–1074.
  • Sigogneau-Russell, D. (1991). Découverte du premier mammifères tribosphénique du Mésozoïque africain. Comptes Rendus de l'Académie desSciences de Paris (Série II), 313, 1635–1640.
  • Simpson, G. G. (1927). Mesozoic Mammalia. VI. Genera of Morrison pantotheres. American Journal of Science, 13, 409–416.
  • Simpson, G. G. (1928). A Catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum. London: Trustees of the British Museum.
  • Simpson, G. G. (1929). American Mesozoic Mammalia. Memoirs of the Peabody Museum of Yale University, 3, 1–235.
  • Spencer, M. A. (2003). Tooth-root form and function in Platyrrhine seed-eaters. American Journal of Physical Anthropology, 122, 325–335.
  • Stynder, D. D. & Kupczik, K. (2013). Tooth root morphology in the Early Pliocene African Bear Agriotherium africanum (Mammalia, Carnivora, Ursidae) and its implications for feeding ecology. Journal of Mammal Evolution, 20, 227–237.
  • Sulej, T., Krzesiński, G., Tałanda, M., Wolniewicz, A. S., Błażejowski, B., Bonde, N., Gutowski, P., Sienkiewicz, M., & Niedźwiedzki, G. (2020). The earliest-known mammaliaform fossil from Greenland sheds light on origin of mammals. Proceedings of National Academy of Sciences U.S.A., 117, 26861–26867.
  • Swofford, D. L. 2003. PAUP*. Phylogenetic analysis using parsimony (*and Other Methods). Sinauer Associates, Sunderland, MA.
  • Trujillo, K. C., Chamberlain, K. R., & Strickland, A. (2006). Oxfordian U/Pb ages from SHRIMP analysis for Upper Jurassic Morrison Formation of southeastern Wyoming with implications for biostratigraphic correlations. Geological Society of America Abstracts with Programs, 38(6), 7.
  • Ungar, P. S. (2010). Mammal Teeth: Origin, Evolution, and Diversity. John Hopkins University Press, Baltimore.
  • Wang, J., & Feng J. Q. (2017). Signaling pathways critical for tooth root formation. Journal of Dental Research, 96, 1221–1228.
  • Weaver, L. N., Varricchio, D. J., Sargis, E. J., Chen, M., Freimuth, W. J., & Wilson Mantilla, G. P. (2021). Early mammalian social behavior revealed by multituberculates from a dinosaur nesting site. Nature Ecology & Evolution, 5, 32–37.
  • Wible, J. R., & Rougier, G. W. (2017). Craniomandibular anatomy of the subterranean meridiolestidan Necrolestes patagonensis Ameghino, 1891 (Mammalia, Cladotheria) from the Early Miocene of Patagonia. Annals of Carnegie Museum, 84, 183–252.
  • Zhou, C.-F., Bhullar, B.-A. S., Neander, A. I., Martin, T., & Luo, Z.-X. (2019). New Jurassic mammaliaform sheds light on early evolution of mammal-like hyoid bones. Science, 365, 276–279. https://doi.org/10.1126/science.aau9345

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.