589
Views
0
CrossRef citations to date
0
Altmetric
Articles

Why the short face? The face lengths of sthenurine kangaroos scale with negative allometry

, , , &
Article: e2336145 | Received 04 Jul 2023, Accepted 18 Mar 2024, Published online: 23 Apr 2024

LITERATURE CITED

  • Adobe (2022). Adobe Illustrator (Version 27.0) [Computer software]. https://www.adobe.com/uk/products/illustrator.html
  • Bibi, F., & Tyler, J. (2022). Evolution of the bovid cranium: morphological diversification under allometric constraint. Communications Biology, 5(1), 1–12. doi:10.1038/s42003-021-02877-6
  • Butler, K., Travouillon, K. J., Price, G. J., Archer, M., & Hand, S. J. (2017). Species abundance, richness, and body size evolution of kangaroos (Marsupialia: Macropodiformes) through the Oligo-Miocene of Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 487, 25–36. doi:10.1016/j.palaeo.2017.08.016
  • Cardini, A. (2019). Craniofacial allometry is a rule in evolutionary radiations of placentals. Evolutionary Biology, 46(3), 239–248. doi:10.1007/s11692-019-09477-7
  • Cardini, A., & Polly, P. D. (2013). Larger mammals have longer faces because of size-related constraints on skull form. Nature Communications, 4(1), 1–7. doi:10.1038/ncomms3458
  • Cardini, A., Polly, D., Dawson, R., & Milne, N. (2015). Why the long face? Kangaroos and wallabies follow the same ‘rule’ of cranial evolutionary allometry (CREA) as placentals. Evolutionary Biology, 42(2), 169–176. doi:10.1007/s11692-015-9308-9
  • Chemisquy, M. A., Tarquini, S. D., Romano Muñoz, C. O., & Prevosti, F. J. (2021). Form, function and evolution of the skull of didelphid marsupials (Didelphimorphia: Didelphidae). Journal of Mammalian Evolution, 28(1), 23–33. doi:10.1007/s10914-019-09495-4
  • Cooke, B. N. (1999). Wanburoo hilarus gen. et sp. nov., a lophodont bulungamayine kangaroo (Macropodoidiea: Bulungamayinae) from the Miocene of Riversleigh, northwestern Queensland. Records of the Western Australian Museum, Suppl., 57, 239–253.
  • DeSantis, L. R. G., Field, J. H., Wroe, S., & Dodson, J. R. (2017). Dietary responses of Sahul (Pleistocene Australia – New Guinea) megafauna to climate and environmental change. Paleobiology, 43(2), 181–195. doi:10.1017/pab.2016.50
  • Devillers, C., Mahe, J., Ambroise, D., Bauchot, R., & Chatelain, E. (1984). Allometric studies on the skull of living and fossil Equidae (Mammalia: Perissodactyla). Journal of Vertebrate Paleontology, 4(3), 471–480. doi:10.1080/02724634.1984.10012023
  • Ferreira-Cardoso, S., Billet, G., Gaubert, P., Delsuc, F., & Hautier, L. (2020). Skull shape variation in extant pangolins (Pholidota: Manidae): allometric patterns and systematic implications. Zoological Journal of the Linnean Society, 188(1), 255–275.
  • Figueirido, B., Pérez-Claros, J. A., Torregrosa, V., Martín-Serra, A., & Palmqvist, P. (2010). Demythologizing Arctodus simus, the ‘short-faced’long-legged and predaceous bear that never was. Journal of Vertebrate Paleontology, 30(1), 262–275. doi:10.1080/02724630903416027
  • Flores, D. A., Giannini, N., & Abdala, F. (2018). Evolution of post-weaning skull ontogeny in New World opossums (Didelphidae). Organisms Diversity & Evolution, 18(3), 367–382. doi:10.1007/s13127-018-0369-3
  • Hautier, L., Billet, G., Eastwood, B., & Lane, J. (2014). Patterns of morphological variation of extant sloth skulls and their implication for future conservation efforts. The Anatomical Record (Hoboken), 297(6), 979–1008. doi:10.1002/ar.22916
  • Helgen, K. M., Wells, R. T., Kear, B. P., Gerdtz, W. R., & Flannery, T. F. (2006). Ecological and evolutionary significance of sizes of giant extinct kangaroos. Australian Journal of Zoology, 54(4), 293–303. doi:10.1071/ZO05077
  • Janis, C. M. (1990a). Correlation of cranial and dental variables with body size in ungulates and macropodoids. In J. Damuth, & B. F. MacFadden (Eds.), Body size in mammalian paleobiology: estimation and biological implications (pp. 255–300). Cambridge University Press.
  • Janis, C. M. (1990b). Correlation of cranial and dental variables with dietary preferences: a comparison of macropodoid and ungulate mammals. Memoirs of the Queensland Museum, 28(1), 349–366.
  • Janis, C. M., Buttrill, K., & Figueirido, B. (2014). Locomotion in extinct giant kangaroos: were sthenurines hop-less monsters? PLoS ONE, 9(10), e10988. doi:10.1371/journal.pone.0109888
  • Janis, C. M., Damuth, J., Travouillon, K. J., Figueirido, B., Hand, S. J., & Archer, M. (2016). Palaeoecology of Oligo-Miocene macropodoids determined from craniodental and calcaneal data. Memoirs of Museum Victoria, 74, 209–232. doi:10.24199/j.mmv.2016.74.17
  • Janis, C. M., Napoli, J. G., Billingham, C., & Martín-Serra, A. (2020). Proximal humerus morphology indicates divergent patterns of locomotion in extinct giant kangaroos. Journal of Mammalian Evolution, 27(4), 627–647. doi:10.1007/s10914-019-09494-5
  • Johnson, C. N., & Prideaux, G. J. (2004). Extinctions of herbivorous mammals in the late Pleistocene of Australia in relation to their feeding ecology: no evidence for environmental change as cause of extinction. Austral Ecology, 29(5), 553–557. doi:10.1111/j.1442-9993.2004.01389.x
  • Jones, B., Martín-Serra, A., Rayfield, E. J., & Janis, C. M. (2022). Distal humeral morphology indicates locomotory divergence in extinct giant kangaroos. Journal of Mammalian Evolution, 29(1), 27–41. doi:10.1007/s10914-021-09576-3
  • Kavanagh, K. D., Evans, A. R., & Jernvall, J. (2007). Predicting evolutionary patterns of mammalian teeth from development. Nature, 449(7161), 427–432. doi:10.1038/nature06153
  • Kerr, I. A., & Prideaux, G. J. (2022). A new genus of kangaroo (Marsupialia, Macropodidae) from the late Pleistocene of Papua New Guinea. Transactions of the Royal Society of South Australia, 146(2), 295–318. doi:10.1080/03721426.2022.2086518
  • Koutamanis, D., McCurry, M., Tacail, T., & Dosseto, A. (2023). Reconstructing Pleistocene Australia megafauna herbivore diet using calcium and strontium isotopes. Royal Society Open Science, 10(11), 230991. doi:10.1098/rsos.230991
  • Krone, I. W., Kammerer, C. F., & Angielczyk, K. D. (2019). The many faces of synapsid cranial allometry. Paleobiology, 45(4), 531–545. doi:10.1017/pab.2019.26
  • Law, C. J., Duran, E., Hung, N., Richards, E., Santillan, I., & Mehta, R. S. (2018). Effects of diet on cranial morphology and biting ability in musteloid mammals. Journal of Evolutionary Biology, 31(12), 1918–1931. doi:10.1111/jeb.13385
  • Magnus, L. Z., Machado, R. F., & Caceres, N. (2018). Ecogeography of South-American Rodentia and Lagomorpha (Mammalia, Glires): roles of size, environment, and geography on skull shape. Zoologischer Anzeiger, 277, 33–41. doi:10.1016/j.jcz.2018.06.002
  • Marcucio, R. S., Young, N. M., Hu, D., & Hallgrimsson, B. (2011). Mechanisms that underlie co-variation of the brain and face. Genesis, 49(4), 177–189. doi:10.1002/dvg.20710
  • Marcy, A. E., Guillerme, T., Sherratt, E., Rowe, K. C., Phillips, M. J., & Weisbecker, V. (2020). Australian rodents reveal conserved Cranial Evolutionary Allometry across 10 million years of murid evolution. The American Naturalist, 196(6), 755–768. doi:10.1086/711398
  • Marroig, G. (2007). When size makes a difference: allometry, life-history and morphological evolution of capuchins (Cebus) and squirrels (Saimiri) monkeys (Cebinae, Platyrrhini). BMC Evolutionary Biology, 7(1), 20–26. doi:10.1186/1471-2148-7-20
  • Marshall, L. G. (1973). Fossil vertebrate faunas from the Lake Victoria region, S.W. New South Wales, Australia. Memoirs of the National Museum of Victoria, 34, 151–171. doi:10.24199/j.mmv.1973.34.03
  • Mitchell, D. R. (2019). The anatomy of a crushing bite: The specialised cranial mechanics of a giant extinct kangaroo. PLoS One, 14(9), e0221287.
  • Mitchell, D. R., & Wroe, S. (2019). Biting mechanics determines craniofacial morphology among extant diprotodont herbivores: dietary predictions for the giant extinct short-faced kangaroo, Simosthenurus occidentalis. Paleobiology, 45(1), 167–181. doi:10.1017/pab.2018.46
  • Mitchell, D. R., Sherratt, M., & Weisbecker, V. (2024). Facing the facts: Adaptive trade-offs along body size ranges determine mammalian craniofacial scaling. Biological Reviews, 99(2), 496–524. doi: 10.1101/2023.09.28.560051
  • Mitchell, D. R., Sherratt, E., Ledogar, J. A., & Wroe, S. (2018). The biomechanics of foraging determines face length among kangaroos and their relatives. Proceedings of the Royal Society of London, B, 285, 21080845.
  • Prideaux, G. (2004). Systematics and evolution of the sthenurine kangaroos. University of California Press, 146, 1–604.
  • R Core Team (2021). R: A language and environment for statistical computing (version 4.1.1) [Computer software]. R Foundation for Statistical Computing, https://www.R-project.org/.
  • Radinsky, L. B. (1985). Approaches in morphology: a search for patterns. Annual Review of Ecology and Systematics, 16(1), 1–14. doi:10.1146/annurev.es.16.110185.000245
  • Rhoda, D. P., Haber, A., & Angielczyk, K. D. (2023). Diversification of the ruminant skull along an evolutionary line of least resistance. Science Advances, 9(9), eade8929. doi:10.1126/sciadv.ade8929
  • Rohlf, F. J. (2001). Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution, 55(11), 2143–2160.
  • Rohlf, F. J. (2006). A comment on phylogenetic correction. Evolution, 60(7), 1509–1515. doi:10.1554/05-550.1
  • Tamagnini, D., Meloro, C., & Cardini, A. (2017). Anyone with a long-face? Craniofacial evolutionary allometry (CREA) in a family of short-faced mammals, the Felidae. Evolutionary Biology, 44(4), 476–495. doi:10.1007/s11692-017-9421-z
  • Tamagnini, D., Michaud, M., Meloro, C., Raia, P., Soibelzon, L., Tambusso, P. S., Varela, L., & Maiorano, L. (2023). Conical and sabertoothed cats as an exception to craniofacial evolutionary allometry. Scientific Reports, 13(1), 13571. doi:10.1038/s41598-023-40677-6
  • Uyeda, J. C., Zenil-Ferguson, R., & Pennell, M. W. (2018). Rethinking phylogenetic comparative methods. Systematic Biology, 67(6), 1091–1109. doi:10.1093/sysbio/syy031
  • Wagstaffe, A. Y., O’Driscoll, A. M., Kunz, C. J., Rayfield, E. J., & Janis, C. M. (2022). Divergent locomotor evolution in “giant” kangaroos: Evidence from foot bone bending resistances and microanatomy. Journal of Morphology, 283(3), 313–332. doi:10.1002/jmor.21445
  • Warburton, N. M., Harvey, K. J., Prideaux, G. J., & O'Shea, J. E. (2011). Functional morphology of the forelimb of living and extinct tree-kangaroos (Marsupialia: Macropodidae). Journal of Morphology, 272(10), 1230–1244. doi:10.1002/jmor.10979
  • Wells, R. T., & Tedford, R. H. (1995). Sthenurus (Macropodidae, Marsupialia) from the Pleistocene of Lake Callabonna, South Australia. Bulletin of the American Museum of Natural History, 225, 1–111.
  • Westerman, M., Loke, S., Tan, M. H., & Kear, B. P. (2022). Mitogenome of the extinct Desert ‘rat-kangaroo’ times the adaptation to aridity in macropodoids. Scientific Reports, 12(1), 5829. doi:10.1038/s41598-022-09568-0