106
Views
0
CrossRef citations to date
0
Altmetric
Articles

Channel capacity model in urban areas at 20–70 GHz for 5G systems

References

  • Akdeniz, M. R., Student Member, Y. Liu, M. K. Samimi, Student Member, S. Sun, Student Member, S. Rangan, and Senior Member. 2014. Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications 32 (6):1164–79.
  • Catedra, M. F., and P.-A. Jesús. 1999. Cell planning for wireless communications. Artech House, Inc.Norwood, MA, USA.
  • Jo, O., J. J. Kim, J. Yoon, D. Choi, and W. Hong. 2017. Exploitation of dual-polarization diversity for 5G millimeter-wave MIMO beamforming systems. IEEE Transactions on Antennas and Propagation 65 (12):6646–55. doi:10.1109/TAP.2017.2761979.
  • Karttunen, P., K. Kalliola, T. Laakso, and P. Vainikainen. 1998. Measurement analysis of spatial and temporal correlation in wideband radio channels with adaptive antenna array. ICUPC 1998 - IEEE 1998 International Conference on Universal Personal Communications, Conference Proceedings 1:671–75. doi:10.1109/ICUPC.1998.733053.
  • Keysight Technologies. 2017. 5G over-the-air performance measurement and evaluation using fieldfox handheld analyzers [White Paper]. www.keysight.com/find/5G.
  • Ko, J., Y. J. Cho, S. Hur, T. Kim, A. F. Jeongho Park, K. H. Molisch, M. Peter, D. J. Park, and D. H. Cho. 2017. Millimeter-wave channel measurements and analysis for statistical spatial channel model in in-building and urban environments at 28 GHz. IEEE Transactions on Wireless Communications 16 (9):5853–68. doi:10.1109/TWC.2017.2716924.
  • Maccartney, G. R., Jr, and T. S. Rappaport. 2014. 73 GHz millimeter wave propagation measurements for outdoor urban mobile and backhaul communications in New York City. IEEE International Conference on Communications  (ICC), June 2014, 4862–67.
  • Maltsev, A., A. Pudeyev, I. Bolotin, G. Morozov. 2014. Channel modeling and characterization. MiWEBA.
  • Rangan, B. S., T. S. Rappaport, and E. Erkip. 2014. Millimeter-wave cellular wireless networks : Potentials and challenges. arXiv Preprint arXiv:1401 102:3.
  • Rappaport, T. S., F. Gutierrez, Student Member, E. Ben-dor, Student Member, J. N. Murdock, and Student Member. 2013a. Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Transactions on Antennas and Propagation 61 (4):1850–59.
  • Rappaport, T. S., G. R. Maccartney, Student Member, M. K. Samimi, S. Sun, and Student Member. 2015. Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Transactions on Communications 63  (9): 3029–56.
  • Rappaport, T. S., R. Mayzus, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. K. Samimi, and F. Gutierrez. 2013b. Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access 1 (6):335–49. doi:10.1109/ACCESS.2013.2260813.
  • Rappaport, T. S., G. R. Yunchou Xing, A. F. MacCartney, E. M. Molisch, and J. Zhang. 2017. Overview of millimeter wave communications for a focus on propagation models. IEEE Transactions on Antennas and Propagation 65 (12):6213–30. doi:10.1109/TAP.2017.2734243.
  • Rappaport, T. T. 2016. Spectrum frontiers : The new world ofmillimeter-wave mobile communication, Invited Keynote Presentation, The Federal Communications Commission (FCC) Headquarters.
  • Roh, W., J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, and J. Cho. 2014. Millimeter-wave beamforming as an enabling technology for 5G cellular communications : Theoretical feasibility and prototype results. IEEE Communications Magazine 52 (2):106–13.
  • Salous, S., S. M. Feeney, X. Raimundo, and A. A. Cheema. 2016. Wideband MIMO channel sounder for radio measurements in the 60 GHz band. IEEE Transactions on Wireless Communications 15 (4):2825–32. doi:10.1109/TWC.2015.2511006.
  • Samimi, M. K., S. Sun, and T. S. Rappaport. 2016. MIMO channel modeling and capacity analysis for 5G millimeter-wave wireless systems. 2016 10th European Conference on Antennas and Propagation, EuCAP 2016. doi:10.1109/EuCAP.2016.7481507.
  • Sun, S., G. R. Maccartney, T. S. Rappaport, and A Outdoor Measurements. 2016. Millimeter-wave distance-dependent large-scale propagation measurements and path loss models for outdoor and indoor 5G systems. 2016 10th European Conference on Antennas and Propagation (EuCAP), 1–5.
  • Tajvidy, A. 2019. Diffraction loss model at 0.3–6 GHz for 5G cellular system in microcell urban areas. Electromagnetics 39 (3):168–85. doi:10.1080/02726343.2018.1558607.
  • Tajvidy, A., A. Haghbin, M. A. Pourmina, and R. A. Sadeghzadeh. 2014. A new multiple-input-multiple-output uniform theory of diffraction based channel model for multiple building diffraction in urban environments. Electromagnetics 34 (7):553–67. doi:10.1080/02726343.2014.936780.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.