376
Views
14
CrossRef citations to date
0
Altmetric
ARTICLES

Transition metal oxide nanoparticles: Potential nano-modifier for rocket propellants

, &

References

  • Ayoman, E., G. Hossini, and N. Haghighi. 2015. Synthesis of CuO nanoparticles and study on their catalytic properties. International Journal of Nanoscience and Nanotechnology 11(2):63–70.
  • Barbaro, P., and F. Liguoei, eds. 2010. Heteronized homogeneous catalyst for the fine chemicals production: Materials and processes. Dordrecht: Springer. ISBN978–90-481–3695-7.
  • Bircumshaw, L. L., and B. H. Newman. 1954. The thermal decomposition of ammonium per chlorate I. Introduction, experimental, analysis of gaseous products, and thermal decomposition experiments. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 227: 115–32. doi:10.1098/rspa.1954.0284.
  • Birks, L. S., and H. Friedman. 1946. Particle size determination from X-ray line broadening. Journal of Applied Physics 17: 687–92. doi:10.1063/1.1707771.
  • Brewster, M. Q., and J. C. Mullen. 2011. Burning-rate behavior in aluminized wide-distribution AP composite propellants. Combustion, Explosion, and Shock Waves 47(2): 200–08. doi:10.1134/s0010508211020092.
  • Chakravarthy, S. R., E. W. Price, and R. K. Sigman. 1997. Mechanism of burning rate enhancement of composite solid propellants by ferric oxide. Journal of Propulsion and Power 13(4): 471–80. doi:10.2514/2.5208.
  • Chaturvedi, S., and P. N. Dave. 2011. Review: Nano metal oxide: Potential catalyst on thermal decomposition of ammonium perchlorate. Journal of Experimental Nanoscience 7(2): 205–231.
  • Chaturvedi, S., and P. N. Dave. 2013a. A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. Journal of Saudi Chemical Society 17: 135–49. doi:10.1016/j.jscs.2011.05.009.
  • Chaturvedi, S., and P. N. Dave. 2013b. Review: Design process of nanomaterials. Journal of Materials Science 48:3605–22.
  • Chaturvedi, S., P. N. Dave, and N. N. Patel. 2014. Nano-alloys: Potential catalyst for thermal decomposition of ammonium perchlorate. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 42(2):258–62.
  • Chaturvedi, S., P. N. Dave, and N. N. Patel. 2015. Thermal decomposition AP/HTPB propellants in presence of Zn nanoalloys. Applied Nanoscience 5(1): 93–98. doi:10.1007/s13204-014-0296-3.
  • Chaturvedi, S., P. N. Dave, and N. K. Shah. 2012. Review catalyst: Applications in era of nanoscience. Journal of Saudi Chemical Society 16:307–25.
  • Dave, P. N., P. N. Ram, and S. Chaturvedi. 2015. Nanoferrites: Catalyst for thermal decomposition of ammonium per chlorate. Particulate Science and Technology 33: 677–81. doi:10.1080/02726351.2015.1023479.
  • Gao, J., C. Perkins, J. M. Luther, M. C. Hanna, H. Y. Chen, O. E. Semonin, A. J. Nozik, R. J. Ellingson, and M. C. Beard. 2011. n-type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. Nano Letters 11: 3263–6. doi:10.1021/nl2015729.
  • Huang, X., J. Chen, H. Yu, R. Cai, S. Peng, Q. Yan, and H. H. Hng. 2013. Carbon buffered-transition metal oxide nanoparticle–graphene hybridnanosheets as high-performance anode materials for lithium ion batteries. Journal of Materials Chemistry A 1: 6901–7. doi:10.1039/c3ta10986k.
  • Krishna, S., and R. D. Swami. 1997. Effect of catalyst mixing procedure on subatmospheric combustion characteristics of composite propellants. Journal of Propulsion and Power 13: 207–12. doi:10.2514/2.5171.
  • Kuo, K. K., and M. Summerfield, eds. 1984. Fundamentals of solid propellant combustion, progress astronautics and aeronautics, 90. New York, USA: American Institute of Aeronautics and Astronautics. Online version available at: http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=3097&VerticalID=0
  • Lu, K., W. D. Wei, and J. T. Wang. 1991. Grain growth kinetics and interfacial energies in nanocrystalline Ni-P alloys. Journal of Applied Physics 69: 7345–7. doi:10.1063/1.347591.
  • Mahinroosta, M. 2013. Catalytic effect of commercial nano-CuO and nano-Fe2O3 on thermal decomposition of ammonium perchlorate. Journal of Nanostructure in Chemistry 3: 47–52. doi:10.1186/2193-8865-3-47.
  • Ramakrishna, P. A., P. J. Paul, and H. S. Mukunda. 2001. Sandwich propellant combustion: Modeling and experimental comparison. Proceedings of the Combustion Institute 29: 2963–73. doi:10.1016/s1540-7489(02)80362-5.
  • Sanpo, N., C. C. Berndt, C. Wen, and J. Wang. 2013. Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta Biomaterialia 9(3): 5830–7. doi:10.1016/j.actbio.2012.10.037.
  • Sharma, J. K., P. Srivastava, S. Singh, and G. Singh. 2014. Review on the catalytic effect of nanoparticles on the thermal decomposition of ammonium perchlorate. Energy and Environment Focus 3: 121–30. doi:10.1166/eef.2014.1079.
  • Singh, G., I. P. S. Kapoor, S. Dubey, and P. F. Siril. 2009. Preparation, characterization and catalytic activity of transition metal oxide nanocrystals. Journal of Scientific Conference Proceedings 1: 11–17. doi:10.1166/jcp.2009.002.
  • Singh, G., S. K. Senguta, I. P. S. Kapoor, S. Dubey, R. Dubey, and S. Singh. 2013. Nanoparticles of transition metals as accelerants in the thermal decomposition of ammonium perchlorate. Journal of Energetic Materials 31(3): 165–77. doi:10.1080/07370652.2012.656181.
  • Vargeese, A. A., K. Murlidharan, and V. N. Krishanmurthy. 2014. Kinetics of nano-titanium dioxide catalyzed thermal decomposition of ammonium nitrate –based composite solid propellant. Propellants, Explosives and Pyrotechnics 40: 260–6. doi:10.1002/prep.201400131.
  • Wang, H.-R., Y.-L. Gao, Y.-F. Ye, G.-H. Min, Y. Chen, and X.-Y. Teng. 2003. Crystallization kinetics of an amorphous Zr–Cu–Ni alloy: calculation of the activation energy. Journal of Alloys and Compounds 353: 200–6. doi:10.1016/s0925-8388(02)01208-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.