150
Views
5
CrossRef citations to date
0
Altmetric
8th International Conference for Conveying and Handling of Particulate Solids (CHoPS2015)

Numerical simulation of turbulent pulp flow of concentrated suspensions: Influence of the non-Newtonian properties of the pulp

, &

References

  • Abe, K., T. Kondoh, and Y. Nagano. 1994. A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows – I. Flow field calculations. International Journal of Heat and Mass Transfer 37 (1):139–51. doi:10.1016/0017-9310(94)90168-6.
  • Abid, R. 1993. Evaluation of two-equation turbulence models for predicting transitional flows. International Journal of Engineering Science 31 (6):831–40. doi:10.1016/0020–7225(93)90096-d.
  • Ansys Inc. 2011. ANSYS FLUENT Theory Guide, Release 14.0.
  • Bartosik, A. 2010. Application of rheological models in prediction of turbulent slurry flow. Flow Turbulence and Combustion 84 (2):277–93. doi:10.1007/s10494-009-9234-y.
  • Bartosik, A. 2011a. Simulation of the friction factor in a yield-stress slurry flow which exhibits turbulence damping near the pipe wall. Journal of Theoretical and Applied Mechanics 49 (2):283–300.
  • Bartosik, A. 2011b. Mathematical modelling of slurry flow with medium solid particles. In Proceedings of 2nd international conference on Mathematical Models for Engineering Science, ed. by N. Mastorakis, V. Mladenov, C. M. Travieso-Gonzalez, and M. Kohler, 124–9. Wisconsin, USA: WSEAS Press.
  • Blanco, A., C. Negro, E. Fuente, and J. Tijero. 2007. Rotor selection for a Searle-Type device to study the rheology of paper pulp suspensions. Chemical Engineering and Processing 46 (1):37–44. doi:10.1016/j.cep.2006.04.003.
  • Chang, K. C., W. D. Hsieh, and C. S. Chen. 1995. A modified low-Reynolds-number turbulence model applicable to recirculating flow in pipe expansion. Journal of Fluids Engineering 117 (3):417–23. doi:10.1115/1.2817278.
  • Cotas, C., F. Garcia, P. Ferreira, P. Faia, D. Asendrych, and M. G. Rasteiro. 2014. Chang-Hsieh-Chen low-Reynolds k-ϵ turbulence model Adaptation to study the flow of concentrated pulp suspensions in pipes. In Proceedings of 11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI), 2014, ed. by E. Oñate X. Oliver and A. Huerta. Barcelona, 1–12. Spain: International Center for Numerical Methods in Engineering (CIMNE).
  • Cotas, C., R. Silva, F. Garcia, P. Faia, D. Asendrych, and M. G. Rasteiro. 2015. Application of different low-Reynolds k-ϵ turbulence models to model the flow of concentrated pulp suspensions in pipes. Procedia Engineering 102:1326–35. doi:10.1016/j.proeng.2015.01.263.
  • Dong, S., X. Feng, M. Salcudean, and I. Gartshore. 2003. Concentration of pulp fibers in 3D turbulent channel flow. International Journal of Multiphase Flow 29 (1):1–21. doi:10.1016/s0301-9322(02)00128-3.
  • Duffy, G. G. 2006. Measurements, mechanisms and models: Some important insights into the mechanisms of flow of fibre suspensions. Annual Transactions of the Nordic Rheology Society 14:19–31.
  • Fock, H., J. Wiklund, and A. Rasmuson. 2009. Ultrasound velocity profile (UVP) measurements of pulp suspension flow near the wall. Journal of Pulp and Paper Science 35 (1):26–33.
  • Gillissen, J. J. J., B. J. Boersma, P. H. Mortensen, and H. I. Andersson. 2007a. On the performance of the moment approximation for the numerical computation of fiber stress in turbulent channel flow. Physics of Fluids 19 (3):031502. doi:10.1063/1.2437824.
  • Gillissen, J. J. J., B. J. Boersma, P. H. Mortensen, and H. I. Andersson. 2007b. The stress generated by non-Brownian fibers in turbulent channel flow simulations. Physics of Fluids 19 (11):115107. doi:10.1063/1.2800041.
  • Gullichsen, J., and E. Härkönen. 1981. Medium consistency technology I. Fundamental data. TAPPI Journal 64 (6):69–72.
  • Hsieh, W. D., and K. C. Chang. 1996. Calculation of wall heat transfer in pipe-expansion turbulent flows. International Journal of Heat and Mass Transfer 39:3813–22.
  • Jäsberg, A. 2007. Flow behavior of fibre suspensions in straight pipes: New experimental techniques and multiphase modeling. PhD. Thesis, University of Jyväskylä, Finland.
  • Lam, C. K. G., and K. Bremhorst. 1981. A modified form of the k-ϵ model for predicting wall turbulence. Journal of Fluids Engineering 103 (3):456–60.
  • Launder, B. E., and B. I. Sharma. 1974. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer 1 (2):131–8.
  • Lin, J., and S. Shen. 2010. A theoretical model of turbulent fiber suspension and its application to the channel flow. Science China Physics, Mechanics & Astronomy 53 (9):1659–70.
  • Lundell, F., L. D. Söderberg, and P. H. Alfredsson. 2011. Fluid mechanics of papermaking. Annual Review of Fluid Mechanics 43:195–217.
  • Malin, M. R. 1997. Turbulent pipe flow of power-law fluids. International Communications in Heat and Mass Transfer 24 (7):977–88.
  • Olson, J. S. 1996. The effect of the fibre length on passage through narrow apertures. PhD. Thesis. University of British Columbia, Canada.
  • Rudman, M., and H. M. Blackburn. 2006. Direct numerical simulation of turbulent non-Newtonian flow using a spectral element method. Applied Mathematical Modelling 30 (11):1229–48.
  • Sattari, M., J. Tuomela, H. Niskanen, and J. Hämäläinen. 2014. Coupled simulation of the spherical angles of rigid fibres by using a fibre orientation probability distribution model. International Journal of Multiphase Flow 65:61–7.
  • Steen, M. 1991. Modeling fiber flocculation in turbulent flow: A numerical study. TAPPI Journal 74 (9):175–82.
  • Ventura, C., A. Blanco, C. Negro, P. Ferreira, F. Garcia, and M. Rasterio. 2007. Modeling pulp fiber suspension rheology. TAPPI Journal 6 (7):17–23.
  • Ventura, C., F. Garcia, P. Ferreira, and M. Rasteiro. 2008. Flow dynamics of pulp fiber suspensions. TAPPI Journal 7 (8):20–6.
  • Ventura, C. A. F., F. A. P. Garcia, P. J. Ferreira, and M. G. Rasteiro. 2011. Modeling the turbulent flow of pulp suspensions. Industrial & Engineering Chemistry Research 50 (16):9735–42.
  • Yang, W., S. Shen, and X. Ku. 2013. A new model of turbulent fibre suspension and its application in the pipe flow. The Canadian Journal of Chemical Engineering 91 (5):992–9.
  • Yang, Z., and T. H. Shih. 1993. New time scale based k-ϵ model for near-wall turbulence. AIAA Journal 31 (7):1191–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.